Product details

Local sensor accuracy (max) 2.7 Operating temperature range (°C) -50 to 150 Supply voltage (min) (V) 2.7 Supply voltage (max) (V) 5.5 Supply current (max) (µA) 8.1 Interface type Analog output Sensor gain (mV/°C) -13.6 Rating Catalog Features Industry standard pinout
Local sensor accuracy (max) 2.7 Operating temperature range (°C) -50 to 150 Supply voltage (min) (V) 2.7 Supply voltage (max) (V) 5.5 Supply current (max) (µA) 8.1 Interface type Analog output Sensor gain (mV/°C) -13.6 Rating Catalog Features Industry standard pinout
SOT-SC70 (DCK) 5 4.2 mm² 2 x 2.1 TO-92 (LP) 3 19.136 mm² 5.2 x 3.68 TO-92 (LPG) 3 6.08 mm² 4 x 1.52
  • LMT87LPG (TO-92S package) has a Fast Thermal Time Constant, 10-s Typical (1.2 m/s Airflow)
  • Very Accurate: ±0.4°C Typical
  • Low 2.7-V Operation
  • Average Sensor Gain of -13.6 mV/°C
  • Low 5.4-µA Quiescent Current
  • Wide Temperature Range: –50°C to 150°C
  • Output is Short-Circuit Protected
  • Push-Pull Output With ±50-µA Drive Capability
  • Footprint Compatible With the Industry-Standard LM20/19 and LM35 Temperature Sensors
  • Cost-Effective Alternative to Thermistors
  • LMT87LPG (TO-92S package) has a Fast Thermal Time Constant, 10-s Typical (1.2 m/s Airflow)
  • Very Accurate: ±0.4°C Typical
  • Low 2.7-V Operation
  • Average Sensor Gain of -13.6 mV/°C
  • Low 5.4-µA Quiescent Current
  • Wide Temperature Range: –50°C to 150°C
  • Output is Short-Circuit Protected
  • Push-Pull Output With ±50-µA Drive Capability
  • Footprint Compatible With the Industry-Standard LM20/19 and LM35 Temperature Sensors
  • Cost-Effective Alternative to Thermistors

The LMT87 device is a precision CMOS temperature sensor with ±0.4°C typical accuracy (±2.7°C maximum) and a linear analog output voltage that is inversely proportional to temperature. The 2.7-V supply voltage operation, 5.4-µA quiescent current, and 0.7-ms power-on time enable effective power-cycling architectures to minimize power consumption for battery-powered applications such as drones and sensor nodes. The LMT87LPG through-hole TO-92S package fast thermal time constant supports off-board time-temperature sensitive applications such as smoke and heat detectors. The accuracy over the wide operating range and other features make the LMT87 an excellent alternative to thermistors.

For devices with different average sensor gains and comparable accuracy, refer to Comparable Alternative Devices for alternative devices in the LMT8x family.

The LMT87 device is a precision CMOS temperature sensor with ±0.4°C typical accuracy (±2.7°C maximum) and a linear analog output voltage that is inversely proportional to temperature. The 2.7-V supply voltage operation, 5.4-µA quiescent current, and 0.7-ms power-on time enable effective power-cycling architectures to minimize power consumption for battery-powered applications such as drones and sensor nodes. The LMT87LPG through-hole TO-92S package fast thermal time constant supports off-board time-temperature sensitive applications such as smoke and heat detectors. The accuracy over the wide operating range and other features make the LMT87 an excellent alternative to thermistors.

For devices with different average sensor gains and comparable accuracy, refer to Comparable Alternative Devices for alternative devices in the LMT8x family.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
LMT87-Q1 ACTIVE Automotive ±2.7°C 2.7V to 5.5V analog output temperature sensor with -13.6 mV/°C gain Automotive qualified version
Pin-for-pin with same functionality to the compared device
LMT86 ACTIVE 2.2V-Capable, 10 uA Analog Output Temperature Sensor in SC70 and TO-92 Higher sensor gain (-8.2 mV/°C) in pin-compatible package
TMP235 ACTIVE 1C analog temperature sensor, 10 mV/C Higher accuracy (±1°C) and higher sensor gain (10mV/°C) in a pin-compatible package for cost-optimized designs.
Same functionality with different pin-out to the compared device
LM94022 ACTIVE ±1.5°C Temperature Sensor with Multiple Gain and Class-AB Analog Output Pin-selectable gain device (-13.6, -10.9, -8.2, and -5.5 mV/°C) in package with similar pinout

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 5
Type Title Date
* Data sheet LMT87 2.7-V, SC70/TO-92/TO-92S, Analog Temperature Sensors With Class-AB Output datasheet (Rev. E) PDF | HTML 20 Oct 2017
Application note SC Temp Sensors Challenge Precision RTDs and Thermistors in Build Automation (Rev. A) 08 May 2019
Technical article How to use temperature sensors to achieve linear thermal foldback in automotive LE PDF | HTML 01 Mar 2017
More literature Analog Temperature Sensors 18 Apr 2013
EVM User's guide Using the LMT84-7 Evaluation Board 06 Feb 2013

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

LMT84-7EVM — EVM for LMT84, LMT85, LMT86 and LMT87 Temperature Sensor

The Texas Instruments LMT84-7EVM evaluation module (EVM) helps designers evaluate the operation and performance of the LMT84, LMT85, LMT86, and LMT87 analog temperature sensors.

User guide: PDF
Not available on TI.com
Calculation tool

SNIC009 LMT87 Look-Up Table

Supported products & hardware

Supported products & hardware

Products
Analog temperature sensors
LMT87 ±2°C 2.7V to 5.5V analog output temperature sensor with -13.6 mV/°C gain LMT87-Q1 Automotive ±2.7°C 2.7V to 5.5V analog output temperature sensor with -13.6 mV/°C gain
Reference designs

TIDA-010054 — Bi-directional, dual active bridge reference design for level 3 electric vehicle charging stations

This reference design provides an overview on the implementation of a single-phase dual active bridge (DAB) DC/DC converter. DAB topology offers advantages like soft-switching commutations, a decreased number of devices and high efficiency. The design is beneficial where power density, cost, (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-01606 — 10-kW, bidirectional three-phase three-level (T-type) inverter and PFC reference design

This verified reference design provides an overview on how to implement a three-level three-phase SiC based DC:AC T-type inverter stage. Higher switching frequency of 50KHz reduces the size of magnetics for the filter design and enables higher power density. The use of SiC MOSFETs with switching (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00472 — 230V/250W, Hi-η Sensorless Brushless DC Motor Drive with 30% Reduced Bulk Capacitor Reference Design

The TIDA-00472 is a discrete IGBT-based three-phase inverter for driving brushless DC (BLDC) motors rated up to 250 W, for example, used in cooker hoods, using a sensor-less, trapezoidal control method. The design provides software implementation for DC bus voltage ripple compensation resulting in (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00771 — 10.8V/250W, 97% Efficient,Compact Brushless DC Motor Drive w/Stall Current Limit Reference Design

The TIDA-00771 is a 20 A RMS drive for a three phase brushless DC (BLDC) motor in power tools operating from a 3-cell Li-ion battery with a voltage range of 5 V to 12.6 V. This design is a 45 x 50 mm compact drive implementing sensor-based trapezoidal control. The design uses a discrete, compact (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00774 — 18V/1kW, 160A Peak, >98% Efficient, High Power Density Brushless Motor Drive Reference Design

The TIDA-00774 is a 1kW drive for a three-phase brushless DC (BLDC) motor in power tools operating from a 5-cell Li-ion battery with a voltage up to 21 V. The design is a 65mm x 60mm compact drive, implementing sensor-based trapezoidal control. The design takes advantage of TI's MOSFET Power Block (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00661 — High Resolution, Fast Startup Analog Front End for Air Circuit Breaker Reference Design

The TIDA-00661 reference design features signal processing front-end subsystem for electronic trip units (ETU) used in air circuit breakers (ACB) or molded case circuit breakers (MCCB). This subsystem consists of Delta-Sigma ADC with 24-Bit resolution and fast startup (< 3ms), ±2.5V (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-010210 — 11-kW, bidirectional, three-phase ANPC based on GaN reference design

This reference design provides a design template for implementing a three-level, three-phase, gallium nitride (GaN) based ANPC inverter power stage. The use of fast switching power devices makes it possible to switch at a higher frequency of 100 kHz, reducing the size of magnetics for the filter (...)
Design guide: PDF
Schematic: PDF
Reference designs

PMP8740 — 2-kW industrial AC/DC battery charger reference design with 92% full-load efficiency

This reference design is a module that can be set as standard power supply or a battery charger. The output voltage ranges from 0 V to 32 V at a maximum current of 62.5 A. It consists of four boards, a boost PFC, a phase shift full bridge, a small daughter board (hosting the microcontroller), and (...)
Test report: PDF
Schematic: PDF
Reference designs

TIDA-00498 — Signal Processing Subsystem and Current Input Based Self Power for Breaker Applications (ACB/MCCB)

THe TIDA-00498 reference design features signal processing front-end and self-power block for electronic trip unit (ETU) used in circuit breakers.  A FRAM based micro-controller is used for processing current inputs from signal conditioning amplifiers for 3-phase, neutral and ground current. (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00772 — 18-V/400-W 98% Efficient Compact Brushless DC Motor Drive w/Stall Current Limit Reference Design

The TIDA-00772 is a 18 A RMS drive for a three phase brushless DC (BLDC) motor in power tools operating from a 5-cell Li-ion battery with a voltage up to 21 V. This design is a 45 x 50 mm compact drive implementing sensor-based trapezoidal control. The design uses a discrete, compact MOSFET-based (...)
Design guide: PDF
Schematic: PDF
Package Pins Download
SOT-SC70 (DCK) 5 View options
TO-92 (LP) 3 View options
TO-92 (LPG) 3 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos