176-pin (ZAL) package image

SN74SSQEA32882ZALR ACTIVE

810-MHz, JEDEC SSTE32882 compliant 28-bit to 56-bit registered buffer with address-parity test

ACTIVE custom-reels CUSTOM Custom reel may be available

Pricing

Qty Price
+

Quality information

Rating Catalog
RoHS Yes
REACH Yes
Lead finish / Ball material SNAGCU
MSL rating / Peak reflow Level-3-260C-168 HR
Quality, reliability
& packaging information

Information included:

  • RoHS
  • REACH
  • Device marking
  • Lead finish / Ball material
  • MSL rating / Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
View or download
Additional manufacturing information

Information included:

  • Fab location
  • Assembly location
View

Export classification

*For reference only

  • US ECCN: EAR99

Packaging information

Package | Pins NFBGA (ZAL) | 176
Operating temperature range (°C) 0 to 85
Package qty | Carrier 2,000 | LARGE T&R

Features for the SN74SSQEA32882

  • JEDEC SSTE32882 Compliant
  • 1-to-2 Register Outputs and 1-to-4 Clock Pair Outputs Support
    Stacked DDR3 RDIMMs
  • CKE Powerdown Mode for Optimized System Power Consumption
  • 1.5V/1.35V Phase Lock Loop Clock Driver for Buffering One
    Differential Clock Pair (CK and CK) and Distributing
    to Four Differential Outputs
  • 1.5V/1.35V CMOS Inputs
  • Checks Parity on Command and Address (CS-Gated) Data Inputs
  • Configurable Driver Strength
  • Uses Internal Feedback Loop
  • APPLICATIONS
    • DDR3 Registered DIMMs up to DDR3-1600
    • DDR3L Registered DIMMs up to DDR3L-1333
    • Single-, Dual- and Quad-Rank RDIMM

Description for the SN74SSQEA32882

This JEDEC SSTE32882-compliant, 28-bit 1:2 or 26-bit 1:2 and 4-bit 1:1 registering clock driver with parity is designed for operation on DDR3 registered DIMMs with VDD of 1.5 V and on DDR3L registered DIMMs with VDD of 1.35 V.

All inputs are 1.5 V and 1.35 V CMOS compatible. All outputs are CMOS drivers optimized to drive DRAM signals on terminated traces in DDR3 RDIMM applications. The clock outputs Yn and Yn and control net outputs DxCKEn, DxCSn and DxODTn can be driven with a different strength and skew to optimize signal integrity, compensate for different loading and equalize signal travel speed.

The SN74SSQEA32882 has two basic modes of operation associated with the Quad Chip Select Enable (QCSEN) input. When the QCSEN input pin is open (or pulled high), the component has two chip select inputs, DCS0 and DCS1, and two copies of each chip select output, QACS0, QACS1, QBCS0 and QBCS1. This is the "QuadCS disabled" mode. When the QCSEN input pin is pulled low, the component has four chip select inputs DCS[3:0], and four chip select outputs, QCS[3:0]. This is the "QuadCS enabled" mode. Through the remainder of this specification, DCS[n:0] will indicate all of the chip select inputs, where n=1 for QuadCS disabled, and n=3 for QuadCS enabled. QxCS[n:0] will indicate all of the chip select outputs.

The device also supports a mode where a single device can be mounted on the back side of a DIMM. If MIRROR=HIGH, Input Bus Termination (IBT) has to stay enabled for all input signals in this case.

The SN74SSQEA32882 operates from a differential clock (CK and CK). Data are registered at the crossing of CK going HIGH, and CK going LOW. This data could be either re-driven to the outputs or it could be used to access device internal control registers.

The input bus data integrity is protected by a parity function. All address and command input signals are added up and the last bit of the sum is compared to the parity signal delivered by the system at the input PAR_IN one clock cycle later. If they do not match the device pulls the open drain output ERROUT LOW. The control signals (DCKE0, DCKE1, DODT0, DODT1, DCS[n:0]) are not part of this computation.

The SN74SSQEA32882 implements different power saving mechanisms to reduce thermal power dissipation and to support system power down states. By disabling unused outputs the power consumption is further reduced.

The package is optimized to support high density DIMMs. By aligning input and output positions towards DIMM finger signal ordering and SDRAM ballout the device de-scrambles the DIMM traces allowing low cross talk design with low interconnect latency.

Edge controlled outputs reduce ringing and improve signal eye opening at the SDRAM inputs.

Pricing

Qty Price
+

Carrier options

You can choose different carrier options based on the quantity of parts, including full reel, custom reel, cut tape, tube or tray.

A custom reel is a continuous length of cut tape from one reel to maintain lot- and date-code traceability, built to the exact quantity requested. Following industry standards, a brass shim connects an 18-inch leader and trailer on both sides of the cut tape for direct feeding into automated assembly machines. TI includes a reeling fee for custom reel orders.

Cut tape is a length of tape cut from a reel. TI may fulfill orders using multiple strips of cut tapes or boxes to satisfy the quantity requested.

TI often ships tube or tray devices inside a box or in the tube or tray, depending on inventory availability. We pack all tapes, tubes or sample boxes according to internal electrostatic discharge and moisture-sensitivity-level protection requirements.

Learn more

Lot and date code selection may be available

Add a quantity to your cart and begin the checkout process to view the options available to select lot or date codes from existing inventory.

Learn more