

Radial Leaded > 600R Series

600R Series

Agency Approvals

AGENCY	AGENCY FILE NUMBER
c FL [®] us	E183209
<u>А</u> тüv	R50120008

Description

The 600R Series is designed to protect against power fault events typically found in telecom applications. This series is designed to be used in applications that need to meet the requirements of GR–1089-CORE and UL60950/EN60950/ IEC60950. These resettable devices also help to meet the requirements of ITU K.20, K.21 and K.44.

Features

- 0.15 0.16A hold current range, 60VDC operating voltage
- Binned and sorted narrow resistance ranges available

RoHS 🔞 HF* c 🔊 us 🛆

- RoHS compliant, Lead– Free and Halogen-Free*
- 600VAC interrupt rating Fast time-to-trip

Applications

Secondary overcurrent protection for:

- Central Office Equipment (CO)
- Customer Premises
 Equipment (CE)
- Alarm systems
- Set Top Boxes (STB)
- Voice over IP (VOIP)
- Subscriber Line Interface Circuit (SLIC)

Electrical Characteristics

Part Number	ا _{hold}	ا _{trip}	V _{max} I _{max}				Maximum Time To Trip		Resistance			Agency Approvals	
Fart Number	(A)	(A)	$V_{_{int}}/V_{_{op}}$	(A)	typ. (W)	Current (A)	Time (Sec.)	R _{min} (Ω)	R _{typ} (Ω)	R _{1max} (Ω)	c N us	Д TÜV	
600R150	0.15	0.30	600/60	3	1.00	1	4	6	10	17	X	Х	
600R150-RA	0.15	0.30	600/60	3	1.00	1	4	7	10	20	X	Х	
600R150-RB	0.15	0.30	600/60	3	1.00	1	3	9	12	22	Х	Х	
600R160	0.16	0.32	600/60	3	1.00	1	10	4	10	18	Х	Х	
600R160-RA	0.16	0.32	600/60	3	1.00	1	10	4	7	16	Х	Х	
600R160-R1	0.16	0.32	600/60	3	1.00	1	10	4	8	17	X	х	

I $_{\rm hold}$ = Hold current: maximum current device will pass without tripping in 20°C still air.

I $_{\rm trip}$ = Trip current: minimum current at which the device will trip in 20°C still air.

 $V_{\mbox{\scriptsize int}}$ = Maximum voltage the device can withstand without damage at rated current (I max)

 V_{op} = The device regular operation voltage

 $R_{min} = Minimum$ resistance of device in initial (un-soldered) state. $R_{min} = Typical$ resistance of device in initial (un-soldered) state.

R _{trax} = Maximum resistance of device in finitial (un-soldered) state.

Caution: Operation beyond the specified rating may result in damage and possible arcing and flame.

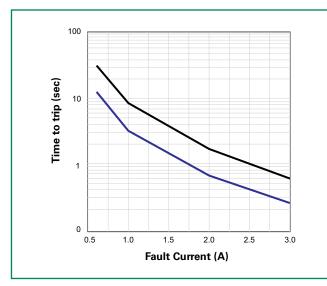
I $_{\rm max}$ = Maximum fault current device can withstand without damage at rated voltage (V $_{\rm max}$

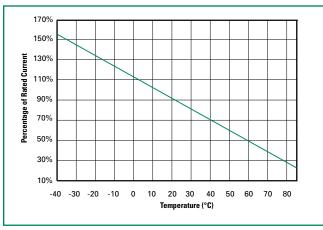
P $_{\rm d}$ = Power dissipated from device when in the tripped state at 20°C still air.

* Effective February 11, 2010 onward, all 600R PTC products will be manufactured Halogen Free (HF). Existing Non-Halogen Free 600R PTC products may continue to be sold, until supplies are depleted. This change will have no effect on 600R product specifications or performance.

WARNING

- · Users shall independently assess the suitability of these devices for each of their applications
- Operation of these devices beyond the stated maximum ratings could result in damage to the devices and lead to electrical arcing and/or fire
- These devices are intended to protect against the effects of temporary over-current or over-temperature conditions and are not intended to perform as protective devices where such conditions are expected to be repetitive or prolonged in duration
- Exposure to silicon-based oils, solvents, electrolytes, acids, and similar materials can adversely affect the performance of these PPTC devices
- These devices undergo thermal expansion under fault conditions, and thus shall be provided with adequate space and be protected against mechanical stresses
- · Circuits with inductance may generate a voltage (L di/dt) above the rated voltage of the PPTC device.


Radial Leaded > 600R Series


Temperature Rerating

	Ambient Operation Temperature										
	-40°C	-40°C -20°C 0°C 23°C 40°C 60°C 85°C									
Part Number		Hold Current (A)									
600R150	0.241	0.219	0.183	0.150	0.129	0.102	0.74				
600R160	0.274	0.244	0.206	0.160	0.135	0.093	0.44				

Average Time Current Curves

Temperature Rerating Curve

Note:

Typical Temperature rerating curve, refer to table for derating data

The average time current curves and Temperature Rerating curve performance is affected by a number or variables, and these curves provided as guidance only. Customer must verify the performance in their application.

Agency Specification Selection Guide For Telecom and Networking Applications

Part Number	Lightning	Power Cross
600R150 600R160	TIA-968-A – 1.5kV 10/160μs 800V 10/560μs Telcordia GR 1089 – 1.0kV 10/1000μs 2.5kV 2/10μs	UL60950, 3rd Ed – 600Vac, 40A Telcordia GR – 1089 – 600Vac, 60A

Devices should be independently evaluated and tested for use in any specific application

Radial Leaded > 600R Series

Protection Application Guide

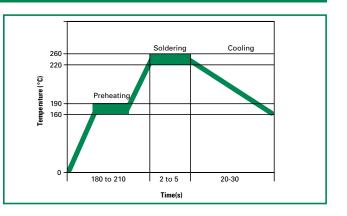
Region/Specification	Application	Device Selection
North America Telcordia GR-1089	*Access network equipment Remote terminal Repeaters WAN equipment Cross -connect	600R150 600R160
North America TIA-968-A, UL60950	Customer and IT equipment Analog modems ADSL, XDSL modems Phone sets, PBX systems Internet appliances POS terminals	600R150 600R160
North America Telcordia GR-1089	Central Office POTS/ISDN linecards T1/E1/J1 linecards ADSL/VDSL splitters CSU/DSU	600R150 600R160
North America Telcordia GR-1089 South America/Asia/Europe ITU K.20 and K.21	*Intrabuilding communication systems LAN, VOIP cards Local loop handsets	600R150 600R160

*Resistance binned parts are recommended

Soldering Parameters - Wave Soldering

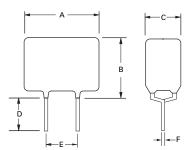
Condition	Wave Soldering			
PeakTemp/ DurationTime	260°C ≦ 5 Sec			
≧ 220°C	2 Sec ~ 20 Sec			
Preheat 140°C~ 180°C	180 Sec ~ 210 Sec			
Storage Condition	0°C~35°C, ≦ 70%RH			

- \bullet Recommended soldering methods: heat element oven or $N_{\rm 2}$ environment for lead-free
- Devices are designed to be wave soldered to the bottom side of the board.
- Devices can be cleaned using standard industry methods and solvents.
- This profile can be used for lead-free device
- **Note:** If soldering temperatures exceed the recommended profile, devices may not meet the performance requirements.

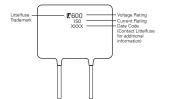

Additional Information

Radial Leaded > 600R Series

Physical Specifications


Lead Material	Tin-plated Copper
Soldering Characteristics	Solderability per MIL–STD–202, Method 208
Insulating Material	Cured, flame retardant epoxy polymer meets UL94V-0 requirements.
Device Labeling	Marked with 'LF', voltage, current rating, and date code.

Part Ordering Number System 600 R 160 - RA F PACKAGING STYLE BLANK: Bulk R: Tape & Ammo QUANTITY CODE: F=200 U=500 Z = 1200 Rx: Resistance Range (x = A-Z or 1-9) [not applicable for all parts] I HOLD CURRENT CODE (SEE TABLE BELOW) R: RADIAL PEAK VOLTAGE RATING


Environmental Specifications

Operating/Storage Temperature	-40°C to +85°C
Maximum Device Surface Temperature in Tripped State	125°C
Passive Aging	85°C/85°C, 1000 hours
Humidity Aging	+85°C, 85% R.H.,1000 hours
Thermal Shock	MIL–STD–202, Method 107 +125°C to -55°C 10 times
Solvent Resistance	MIL-STD-202, Method 215

Dimensions

Part Marking System

А		A B C			D E		Physical Characteristics						
Part Number	Inches	mm	Inches	mm	Inches	mm	Inches	mm	Inches	mm	Lea	d (dia)	Material
	Max.	Max.	Max.	Max.	Max.	Max.	Min.	Min.	Тур.	Тур.	Inches	mm	wateria
600R150	0.35	9	0.49	12.5	0.18	4.6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu
600R150-RA	0.35	9	0.49	12.5	0.18	4.6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu
600R150-RB	0.35	9	0.49	12.5	0.18	4.6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu
600R160	0.63	16	0.50	12.6	0.24	6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu
600R160-RA	0.63	16	0.50	12.6	0.24	6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu
600R160-R1	0.63	16	0.50	12.6	0.24	6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu

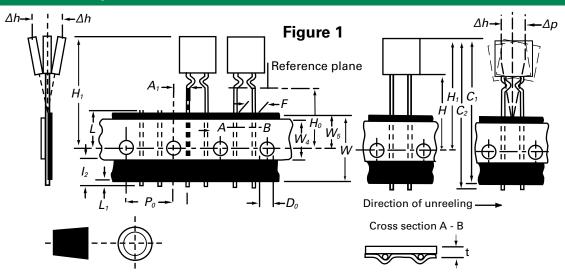
POLY-FUSE[®] Resettable PTCs

Radial Leaded > 600R Series

D		
Packa	gin	q

Part Number	Ordering Number	l _{hold} (A)	l _{hold} Code	Packaging Option	Quantity	Quantity & Packaging Codes
600R150F		0.15	150	Bulk	200	F
600R150	600R150ZR	0.15	150	Tape and Ammo	1200	ZR
600R150-RA	600R150-RAF	0.15	0.15 150		200	F
000n 150-nA	600R150-RAZR	0.15	150	Tape and Ammo	1200	ZR
	600R150-RBF	0.15	150	Bulk	200	F
600R150-RB	600R150-RBZR	0.15	150	Tape and Ammo	1200	ZR
C00D1C0	600R160F	0.10	100	Bulk	200	F
600R160	600R160UR	0.16	160	Tape and Ammo	500	UR
0000400 04	600R160-RAF	0.10	100	Bulk	200	F
600R160-RA	600R160-RAUR	0.16	160	Tape and Ammo	500	UR
0000100.01	600R160-R1F	0.10	100	Bulk	200	F
600R160-R1	600R160-R1UR	0.16	160	Tape and Ammo	500	UR

Radial Leaded > 600R Series


Tape and Ammo Specifications

Devices taped using EIA468-B/IE286-2 standards. See table below and Figure 1 for details.

			Dimer	Dimensions		
Dimension	EIA Mark	IEC Mark	Dim. (mm)	Tol. (mm)		
Carrier tape width	w	w	18	-0.5 / +1.0		
Hold down tape width:	W ₄	w _o	11	min.		
Top distance between tape edges	W ₆	W ₂	3	max.		
Sprocket hole position	W 5	W ₁	9	-0.5 / +0.75		
Sprocket hole diameter*	D ₀	D ₀	4	-0.32 / +0.2		
Abscissa to plane(straight lead)	н	н	18.5	-/+ 3.0		
Abscissa to plane(kinked lead)	H _o	H _o	16	-/+ 0.5		
Abscissa to top	H ₁	H ₁	32.2	max.		
Overall width w/o lead protrusion	C ₁		42.5	max.		
Overall width w/ lead protrusion	C ₂		43.2	max.		
Lead protrusion	L ₁	l ₁	1.0	max.		
Protrusion of cut out	L	L	11	max.		
Protrusion beyond hold-down tape	I ₂	I ₂	Not specified			
Sprocket hole pitch: 600R150 & 600R160	P ₀	P ₀	25.4	-/+ 0.5		
Device pitch: 600R150 & 600R160			25.4			
Pitch tolerance			20 consecutive.	-/+ 1		
Tape thickness	t	t	0.9	max.		
Tape thickness with splice	t ₁		2.0	max.		
Splice sprocket hole alignment			0	-/+ 0.3		
Body lateral deviation	Δh	Δh	0	-/+ 1.0		
Body tape plane deviation	Δр	Δр	0	-/+ 1.3		
Ordinate to adjacent component lead*	P ₁	P ₁	3.81	-/+ 0.7		
Lead spacing	F	F	5.08	-/+ 0.8		

*Differs from EIA Specification

Tape and Ammo Diagram

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

© 2017 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 03/22/17