Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF35835
- Class Q Military
- Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

MM74HC595

8－Bit Shift Register with Output Latches

Features

－Low Quiescent current： $80 \mu \mathrm{~A}$ Maximum （74HC Series）
－Low Input Current： $1 \mu \mathrm{~A}$ Maximum
－8－Bit Serial－In，Parallel－Out Shift Register with Storage
－Wide Operating Voltage Range： $2 \mathrm{~V}-6 \mathrm{~V}$
－Cascadable
－Shift Register has Direct Clear
－Guaranteed Shift Frequency：DC to 30 MHz

Description

The MM74HC595 high－speed shift register utilizes advanced silicon－gate CMOS technology．This device possesses the high noise immunity and low power consumption of standard CMOS integrated circuits，as well as the ability to drive 15 LS－TTL loads．
This device contains an eight－bit serial－in，parallel－out， shift register that feeds an eight－bit D－type storage register．The storage register has eight 3－state outputs． Separate clocks are provided for both the shift register and the storage register．The shift register has a direct－ overriding clear，serial input，and serial output （standard）pins for cascading．Both the shift register and storage register use positive－edge triggered clocks． If both clocks are connected together，the shift register state is one clock pulse ahead of the storage register．

The 74 HC logic family is speed，function，and pin－out compatible with the standard 74LS logic family．All inputs are protected from damage due to static discharge by internal diode clamps to V_{cc} and ground．

Ordering Information

Part Number	Operating Temperature Range	Eco Status	Package	Packing Method
MM74HC595M	-40 to $+85^{\circ} \mathrm{C}$	RoHS	16－Lead，Small Outline Integrated Circuit（SOIC）， JEDEC MS－012，0．150 Inch Narrow	Tubes
MM74HC595MX	-40 to $+85^{\circ} \mathrm{C}$	RoHS		Tape and Reel
MM74HC595SJ	-40 to $+85^{\circ} \mathrm{C}$	RoHS	16－Lead，Small Outline Package（SOP），EIAJ TYPE II，5．3mm Wide	Tubes
MM74HC595SJX	-40 to $+85^{\circ} \mathrm{C}$	RoHS		Tape and Reel
MM74HC595MTC	-40 to $+85^{\circ} \mathrm{C}$	RoHS	16－Lead，Thin Shrink Small Outline Package （TSSOP），JEDEC MO－153，4．4mm Wide	Tubes
MM74HC595MTCX	-40 to $+85^{\circ} \mathrm{C}$	RoHS		Tape and Reel
MM74HC595N	-40 to $+85^{\circ} \mathrm{C}$	RoHS	16－Lead，Plastic Dual In－Line Package（PDIP）， JEDEC MS－001， 0.300 Inch Wide	Tubes

[^0]
Block Diagram

Figure 1. Logic Diagram (Positive Logic)

Pin Configuration

Figure 2. Pin Configuration

Pin Definitions

Pin \#	Name	Description
1	Q_{B}	Output Bit B
2	Q_{C}	Output Bit C
3	Q_{D}	Output Bit D
4	Q_{E}	Output Bit E
5	Q_{F}	Output Bit F
6	Q_{G}	Output Bit G
7	Q_{H}	Output Bit H
8	GND	Ground
9	Q_{H}	Serial Data Output
10	$\overline{\text { SCLR }}$	Shift Register Clear
11	SCK	Shift Register Clock Input
12	RCK	Storage Register Clock Input
13	$\overline{\mathrm{G}}$	Output Enable
14	SER	Serial Data Input
15	QA	Output Bit A
16	VCC	Supply Voltage

Truth Table

RCK	SCK	SCLR	G	Function
X	X	X	H	QA through $Q_{H}=3$-state
X	X	L	L	Shift register clocked; $Q_{H}=0$
X	\uparrow	H	L	Shift register clocked; $Q_{N}=Q_{n-1}, Q_{0}=$ SER
\uparrow	X	H	L	Contents of shift; register transferred to output latches

[^1]
Absolute Maximum Ratings ${ }^{(1)}$

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V_{Cc}	Supply Voltage		-0.5	7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage		-1.5 to $\mathrm{V}_{\text {cc }+}$	1.5	V
$V_{\text {OUT }}$	DC Output Voltage		-0.5 to $\mathrm{V}_{\text {CC+ }}$	0.5	V
$\mathrm{I}_{\text {IK }}, \mathrm{l}_{\text {OK }}$	Clamp Diode Current			± 20	mA
lout	DC Output Current, per Pin			± 35	mA
Icc	DC VCC or GND Current, per Pin			± 70	mA
Tstg	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
PD	Power Dissipation	PDIP ${ }^{(2)}$		600	mW
		SOIC Package Only		500	
TL	Lead Temperature			+260	${ }^{\circ} \mathrm{C}$
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114		4000	V

Notes:

1. Unless otherwise specified all voltages are referenced to ground.
2. Power dissipation temperature derating, plastic package (PDIP); $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from -65 to $+85^{\circ} \mathrm{C}$.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Max.	Unit
$V_{\text {cc }}$	Supply Voltage		2	6	V
$\mathrm{V}_{\text {IN }}$, $\mathrm{V}_{\text {OUt }}$	DC Input or Output Voltage		0	$V_{c c}$	V
T_{A}	Operating Temperature Range		-40	+85	${ }^{\circ} \mathrm{C}$
$t_{\text {R }, ~}, \mathrm{t}_{\mathrm{F}}$	Input Rise and Fall Times	$\mathrm{V}_{\mathrm{cc}}=2.0 \mathrm{~V}$		1000	ns
		$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$		500	
		$\mathrm{V}_{\mathrm{cc}}=6.0 \mathrm{~V}$		400	

Electrical Characteristics ${ }^{(3)}$

Symbol	Parameter	Conditions		V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} T_{A}=-40 \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & T_{A}=-55 \\ & \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Units	
				Typ.	Guaranteed Limits					
$\mathrm{V}_{\text {IH }}$	Minimum HIGH Level Input Voltage				2.0 V		1.50	1.50	1.50	V
				4.5 V		3.15	3.15	3.15		
				6.0 V		4.20	4.20	4.20		
VIL	Minimum LOW Level Input Voltage			2.0 V		0.50	0.50	0.50	V	
				4.5 V		1.35	1.35	1.35		
				6.0 V		1.80	1.80	1.80		
V_{OH}	Minimum HIGH Level Output Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	\mid lout $\mid \leq 20 \mu \mathrm{~A}$	2.0 V	2.00	1.90	1.90	1.90	V	
				4.5 V	4.50	4.40	4.40	4.40		
				6.0 V	6.00	5.90	5.90	5.90		
	Q'H	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$	\mid Iout $\mid \leq 4.0 \mathrm{~mA}$	4.5 V	4.20	3.98	3.84	3.70	V	
			\mid lout $\mid \leq 5.2 \mathrm{~mA}$	6.0 V	5.20	5.48	5.34	5.20		
	Q_{A} through Q_{H}	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	\mid Iout $\mid \leq 6.0 \mathrm{~mA}$	4.5 V	4.20	3.98	3.84	3.70	V	
			\mid Iout $\mid \leq 7.8 \mathrm{~mA}$	6.0 V	5.70	5.48	5.34	5.20		
Vol	Minimum LOW Level Output Voltage	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$	\mid Iout $\mid \leq 20 \mu \mathrm{~A}$	2.0 V	0	0.10	0.10	0.10	V	
				4.5 V	0	0.10	0.10	0.10		
				6.0 V	0	0.10	0.10	0.10		
	Q'н	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	\mid Iout $\mid \leq 4.0 \mathrm{~mA}$	4.5 V	0.20	0.26	0.33	0.40	V	
			\mid Iout $\mid \leq 5.2 \mathrm{~mA}$	6.0 V	0.20	0.26	0.33	0.40		
	Q_{A} through Q_{H}	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	\mid Iout $\mid \leq 6.0 \mathrm{~mA}$	4.5 V	0.20	0.26	0.33	0.40	V	
			\mid Iout $\mid \leq 7.8 \mathrm{~mA}$	6.0 V	0.20	0.26	0.33	0.40		
1 IN	Maximum Input Output Leakage	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}$ or GND		6.0 V		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	
loz	Maximum 3State Output Leakage	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ or GND	$\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IH}}$	6.0 V		± 0.5	± 5.0	± 10	$\mu \mathrm{A}$	
Icc	Maximum Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or GND } \end{aligned}$	$l_{\text {lout }}=\mu \mathrm{A}$	6.0 V		8.0	80	160	$\mu \mathrm{A}$	

Note:

3. For a power supply of $5 \mathrm{~V} \pm 10 \%$, the worst-case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5 V . The 4.5 V values should be used when designing with this supply. Worst-case V_{IH} and V_{IL} occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V , respectively; V_{IH} value at 5.5 V is 3.85 V . The worst-case leakage current ($\mathrm{I}_{\mathrm{N}}, \mathrm{I}_{\mathrm{cc}}$, and I_{oz}) occurs for CMOS at the higher voltage; so the 6.0 V values should be used.

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$.

Symbol	Parameter	Conditions	Typ.	Guaranteed Limit	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Operating Frequency of SCK		50	30	MHz
$\mathrm{t}_{\text {PHL }}$,tpLH	Maximum Propagation Delay, SCK to Q'н	$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$	12	20	ns
	Maximum Propagation Delay, RCK to Q_{A} thru Q'н		18	30	
tpzh,tpzL	Maximum Output Enable Time from $\overline{\mathrm{G}}$ to QA thru Q'H	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$	17	28	ns
$\mathrm{t}_{\text {PHz }, \mathrm{t}_{\text {PLZ }}}$	Maximum Output Disable Time from $\overline{\mathrm{G}}$ to Q_{A} thru Q'H	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$	15	25	ns
ts	Minimum Setup Time from SER to SCK			20	ns
	Minimum Setup Time from $\overline{\text { SCLR }}$ to SCK			20	ns
	Minimum Setup Time from SER to $\mathrm{RCK}^{(4)}$			40	ns
t_{H}	Minimum Hold Time from SER to SCK			0	ns
tw	Minimum Pulse Width of SCK or RCK			16	ns

Note:
4. This setup time ensures the register will see stable data from the shift-register outputs. The clocks may be connected together in which case the storage register state will be one clock pulse behind the shift register.

Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.0-6.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$ unless otherwise specified.

Symbol	Parameter	Conditions	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55 \\ \text { to } 125^{\circ} \mathrm{C} \end{gathered}$	Units
				Typ.		uaranteed L	Limits	
$\mathrm{f}_{\text {max }}$	Maximum Operating Frequency	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2.0 V	10.0	6.0	4.8	4.0	ns
			4.5 V	45.0	30.0	24.0	20.0	
			6.0 V	50.0	35.0	28.0	24.0	
$\mathrm{t}_{\text {PHL }}$,tpLH	Maximum Propagation Delay, SCK to Q'н	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2.0 V	58.0	210.0	235.0	315.0	ns
		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$	2.0 V	83.0	294.0	367.0	441.0	
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5 V	14.0	42.0	53.0	63.0	
		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$	4.5 V	17.0	58.0	74.0	88.0	
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6.0 V	10.0	36.0	45.0	54.0	
		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$	6.0 V	14.0	50.0	63.0	76.0	
	Maximum Propagation Delay, RCK to Q_{A} thru Q_{H}^{\prime}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2.0 V	70.0	175.0	220.0	265.0	ns
		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$	2.0 V	105.0	245.0	306.0	368.0	
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5 V	21.0	35.0	44.0	53.0	
		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$	4.5 V	28.0	49.0	61.0	74.0	
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6.0 V	18.0	30.0	37.0	45.0	
		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$	6.0 V	26.0	42.0	53.0	63.0	
	Maximum Propagation Delay, SCLR to Q'н		2.0 V		175.0	221.0	261.0	ns
			4.5 V		35.0	44.0	52.0	
			6.0 V		30.0	37.0	44.0	
tpzh,tPzL	Maximum Output Enable Time from \bar{G} to Q_{A} thru $Q^{\prime}{ }_{H}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2.0 V	75.0	175.0	220.0	265.0	ns
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$	2.0 V	100.0	245.0	306.0	368.0	
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5 V	15.0	35.0	44.0	53.0	
		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$	4.5 V	20.0	49.0	61.0	74.0	
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6.0 V	13.0	30.0	37.0	45.0	
		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$	6.0 V	17.0	42.0	53.0	63.0	
$\mathrm{t}_{\text {PHz, }}$ tPLZ	Maximum Output Disable Time from G to Q_{A} thru Q'H	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2.0 V	75.0	175.0	220.0	265.0	ns
			4.5 V	15.0	35.0	44.0	53.0	
			6.0 V	13.0	30.0	37.0	45.0	

Continued on the following page...

Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.0-6.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$ unless otherwise specified.

Symbol	Parameter	Conditions	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} T_{A}=-40 \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55 \\ & \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Units
				Typ.	Guaranteed Limits			
ts	Minimum Setup Time from SER to SCK	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2.0 V		100	125	150	ns
			4.5 V		20	25	30	
			6.0 V		17	21	25	
t_{R}	Minimum Removal Time from SCLR to SCK		2.0 V		50	63	75	ns
			4.5 V		10	13	15	
			6.0 V		9	11	13	
ts	Minimum Setup Time from SCK to RCK		2.0 V		100	125	150	ns
			4.5 V		20	25	30	
			6.0 V		17	21	26	
t_{H}	Minimum Hold Time from SER to SCK		2.0 V		5	5	5	ns
			4.5 V		5	5	5	
			6.0 V		5	5	5	
tw	Minimum Pulse Width of SCK or SCLR		2.0 V	30	80	100	120	ns
			4.5 V	9	16	20	24	
			6.0 V	8	14	18	22	
$t_{\text {R }, ~}, \mathrm{t}_{\mathrm{F}}$	Maximum Input Rise and Fall Time, Clock		2.0 V		1000	1000	1000	ns
			4.5 V		500	500	500	
			6.0 V		400	400	400	
$\mathrm{t}_{\text {THL }}$, $\mathrm{t}_{\text {TLH }}$	Maximum Output Rise and Fall Time $Q_{A}-Q_{H}$		2.0 V	25	60	75	90	ns
			4.5 V	7	12	15	18	
			6.0 V	6	10	13	15	
	Maximum Output Rise and Fall Time Q'н		2.0 V		75	95	110	ns
			4.5 V		15	19	22	
			6.0 V		13	16	19	
CPD	Power Dissipation Capacitance, Outputs Enabled ${ }^{(5)}$	$\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{cc}}$		90				pF
		$\overline{\mathrm{G}}=\mathrm{GND}$		150				
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance			5	10	10	10	pF
Cout	Maximum Output Capacitance			15	20	20	20	pF

Note:
5. $C_{P D}$ determines the no load dynamic power consumption, $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$, and the no load dynamic current consumption, $I_{S}=C_{P D} V_{C C} f+I_{C C}$.

Timing Diagram

Figure 3. Timing Diagram
Note:
6. XXX Implies that the output is in 3-state mode.

Physical Dimensions

Figure 4. 16-Lead, Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Inch Narrow

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://hww.fairchildsemi.com/packaging/.

Physical Dimensions

Figure 5. 16-Lead, Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

Physical Dimensions

MTC16rev4

Figure 6. 16-Lead, Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

Physical Dimensions

Figure 7. 16-Lead, Plastic Dual In-Line Package (PDIP), JEDEC MS-001, 0.300 Inch Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following indudes registered and unregistered trademarks and serviœe marks, owned by Fairchild Semiconductor and/or its global subsidianies, and is not intended to be an exhaustive list of all such trademarks.

Auto-SPM ${ }^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$	PowerTrench ${ }^{*}$	The Power Franchise ${ }^{\text {e }}$
Build it Now ${ }^{\text {Tm }}$	FRFET ${ }^{\text {® }}$	PowerXS ${ }^{\text {TM }}$	
CorePLUS'm	Global Power Resource ${ }^{\text {SM }}$	Programmable Active Droop ${ }^{\text {™ }}$	P wer
CorePOWER ${ }^{\text {tm }}$	Green FPS ${ }^{\text {TM }}$	QFET ${ }^{\text {® }}$	TinyBoost ${ }^{\text {m }}$
CROSSVOLTTM	Green FPS ${ }^{\text {™ }}$ e-Series ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {m }}$
CTL ${ }^{\text {m }}$	Gmax ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {a }}$
Current Transfer Logic ${ }^{\text {TM }}$	GTOTM	RapidConfigure ${ }^{\text {TM }}$	TINYOPTOTM
Ecospark ${ }^{\text {® }}$	IntelliMAX'm	()	TinyPowertm
EfficentMax ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	$\bigcirc_{\text {TM }}$	TinyPowertm Tin:PMM ${ }^{\text {Tm }}$
EZSMTCH ${ }^{\text {TM* }}$	MegaBuck ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{mW/W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	Tiny Mirem
E7 ${ }^{\text {TM* }}$	MICROCOUPLERTM	SmartMax ${ }^{\text {TM }}$	TriFault Detect ${ }^{\text {TM }}$
$\square{ }^{(8)}$	MicroFET ${ }^{\text {m }}$	SMART STARTTM	TRUECURRENT ${ }^{\text {TM* }}$
$\overbrace{}^{8}$	MicroPak ${ }^{\text {TM }}$	SPM ${ }^{\text {® }}$	μ SerDes ${ }^{\text {TM }}$
Fairchild ${ }^{\text {a }}$	MillerDrive ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	W
Fairchild ${ }^{\text {F }}$ Fairchild Semiconductor ${ }^{\text {® }}$	MotionMax ${ }^{\text {TM }}$	SuperFET ${ }^{\text {tM }}$	SerDes
Fairchild Semiconductor FACT Quiet Series ${ }^{\text {™ }}$	Motion-SPM ${ }^{\text {TM }}$	SupersOTm. 3	UHC ${ }^{\text {® }}$
FACT Quiet Series ${ }^{\text {TM }}$ FACT^{-8}	OPTOLOGIC ${ }^{\text {O }}$ OPTOPLANAR	SuperSOTTM-6	Ultra FRFET ${ }^{\text {TM }}$
$\mathrm{FAST}^{\text {® }}$	OPTOPLANAR	SuperSOTTM-8	UniFET ${ }^{\text {m/ }}$
FastvCore ${ }^{\text {tM }}$		SyncFET ${ }^{\text {m }}$	VCX ${ }^{\text {TM }}$
FETBench ${ }^{\text {TM }}$	PDP SPM ${ }^{\text {TM }}$	Sync-Lock ${ }^{\text {TM }}$	VisualMax ${ }^{\text {™ }}$
FlashWriter ${ }^{\text {®* }}$	Power-SPM ${ }^{\text {™ }}$	5 SYSTEM ©*	$X S^{\text {TM }}$
FPS ${ }^{\text {TM }}$		SGENERAL	

DISCLAIMER

FAIRCHILD SEMICONDUCTORRESERVES THE RIGHT TO MAKE CHANGES WTHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE REUABIUTY, FUNCTION, ORDESIGN. FAIRCHIDDOES NOT ASSUME ANY LIABIUTY ARISING OUT OF THE APPLICATION ORUSE OF ANY PRODUCT OR CIRCUIT DESCRBED HEREIN; NEITHER DOES IT CONVEY ANY UCENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPANDTHE TERMS OF FAIRCHID'SWORLDMDE TERMS AND CONDITIONS, SPECAFICALY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITIEN APPROVAL OF FAIRCHILDSEMICONDUCTOR CORPORATION

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITNG POLICY

Fairchild Semiconductor Comporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, whw.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiending counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience mary problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide ary warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

[^0]: For Fairchild＇s definition of Eco Status，please visit：http：／／www．fairchildsemi．com／company／green／rohs green．html．

[^1]: L = Logic Level LOW
 H = Logic Level HIGH
 X = Don't Care
 $\uparrow=$ Transition from LOW to HIGH level

