

TRANSITION-MODE PFC CONTROLLER

1 FEATURES

- REALISED IN BCD TECHNOLOGY
- TRANSITION-MODE CONTROL OF PFC PRE-REGULATORS
- PROPRIETARY MULTIPLIER DESIGN FOR MINIMUM THD OF AC INPUT CURRENT
- VERY PRECISE ADJUSTABLE OUTPUT OVERVOLTAGE PROTECTION
- ULTRA-LOW (≤70µA) START-UP CURRENT
- LOW (≤4 mA) QUIESCENT CURRENT
- EXTENDED IC SUPPLY VOLTAGE RANGE
- ON-CHIP FILTER ON CURRENT SENSE
- DISABLE FUNCTION
- 1% (@ Tj = 25 °C) INTERNAL REFERENCE VOLTAGE
- -600/+800mA TOTEM POLE GATE DRIVER WITH UVLO PULL-DOWN AND VOLTAGE CLAMP
- DIP-8/SO-8 PACKAGES

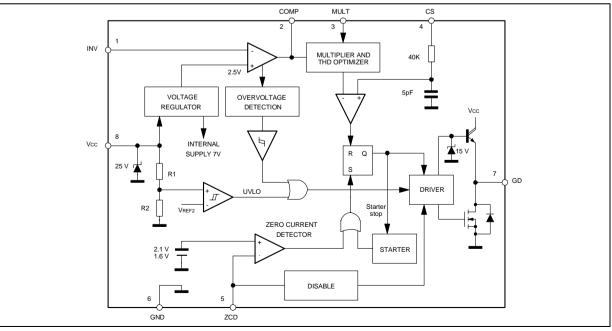
1.1 APPLICATIONS

- PFC PRE-REGULATORS FOR:
 - IEC61000-3-2 COMPLIANT SMPS (TV,

Figure 2. Block Diagram

Figure 1. Packages

Table 1. Order Codes


Part Number	Package
L6562N	DIP-8
L6562D	SO-8
L6562DTR	Tape & Reel

DESKTOP PC, MONITOR) UP TO 300W

- HI-END AC-DC ADAPTER/CHARGER
- ENTRY LEVEL SERVER & WEB SERVER

2 DESCRIPTION

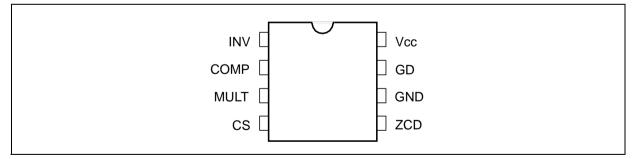
The L6562 is a current-mode PFC controller operating in Transition Mode (TM). Pin-to-pin compatible with the predecessor L6561, it offers improved performance.

2 **DESCRIPTION** (continued)

The highly linear multiplier includes a special circuit, able to reduce AC input current distortion, that allows wide-range-mains operation with an extremely low THD, even over a large load range.

The output voltage is controlled by means of a voltage-mode error amplifier and a precise (1% $@Tj = 25^{\circ}C$) internal voltage reference.

The device features extremely low consumption (\leq 70 µA before start-up and <4 mA running) and includes a disable function suitable for IC remote ON/OFF, which makes it easier to comply with energy saving norms (Blue Angel, EnergyStar, Energy2000, etc.).


An effective two-step OVP enables to safely handle overvoltages either occurring at start-up or resulting from load disconnection.

The totem-pole output stage, capable of 600 mA source and 800 mA sink current, is suitable for big MOS-FET or IGBT drive which, combined with the other features, makes the device an excellent low-cost solution for EN61000-3-2 compliant SMPS's up to 300W.

Symbol	Pin	Parameter	Value	Unit
V _{CC}	8	IC Supply voltage (Icc = 20 mA)	self-limited	V
IGD	7	Output Totem Pole Peak Current	±0.8	А
	1 to 4	Analog Inputs & Outputs	-0.3 to 8	V
IZCD	5	Zero Current Detector Max. Current	-50 (source) 10 (sink)	mA
P _{tot}		Power Dissipation @Tamb = 50°C (DIP-8) (SO-8)	1 0.65	W
Тј		Junction Temperature Operating range	-40 to 150	°C
T _{stg}		Storage Temperature	-55 to 150	°C

Table 2. Absolute Maximum Ratings

Figure 3. Pin Connection (Top view)

Table 3. Thermal Data

Symbol	Parameter	SO8	Minidip	Unit
R _{th j-amb}	Max. Thermal Resistance, Junction-to-ambient	150	100	°C/W

Table 4. Pin Description

N°	Pin	Function
1	INV	Inverting input of the error amplifier. The information on the output voltage of the PFC pre- regulator is fed into the pin through a resistor divider.
2	COMP	Output of the error amplifier. A compensation network is placed between this pin and INV (pin #1) to achieve stability of the voltage control loop and ensure high power factor and low THD.
3	MULT	Main input to the multiplier. This pin is connected to the rectified mains voltage via a resistor divider and provides the sinusoidal reference to the current loop.
4	CS	Input to the PWM comparator. The current flowing in the MOSFET is sensed through a resistor, the resulting voltage is applied to this pin and compared with an internal sinusoidal-shaped reference, generated by the multiplier, to determine MOSFET's turn-off.
5	ZCD	Boost inductor's demagnetization sensing input for transition-mode operation. A negative-going edge triggers MOSFET's turn-on.
6	GND	Ground. Current return for both the signal part of the IC and the gate driver.
7	GD	Gate driver output. The totem pole output stage is able to drive power MOSFET's and IGBT's with a peak current of 600 mA source and 800 mA sink. The high-level voltage of this pin is clamped at about 12V to avoid excessive gate voltages in case the pin is supplied with a high Vcc.
8	Vcc	Supply Voltage of both the signal part of the IC and the gate driver. The supply voltage upper limit is extended to 22V min. to provide more headroom for supply voltage changes.

Table 5. Electrical Characteristics

(T_j = -25 to 125°C, V_{CC} = 12, C_O = 1 nF; unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
SUPPLY	VOLTAGE	·				
V _{CC}	Operating range	After turn-on	10.3		22	V
V _{CCon}	Turn-on threshold	(1)	11	12	13	V
V _{CCOff}	Turn-off threshold	(1)	8.7	9.5	10.3	V
Hys	Hysteresis		2.2		2.8	V
Vz	Zener Voltage	I _{CC} = 20 mA	22	25	28	V
SUPPLY	CURRENT	·				
I _{start-up}	Start-up Current	Before turn-on, V _{CC} =11V		40	70	μA
Ιq	Quiescent Current	After turn-on		2.5	3.75	mA
Icc	Operating Supply Current	@ 70 kHz		3.5	5	mA
Ιq	Quiescent Current	During OVP (either static or dynamic) or V _{ZCD} =150 mV			2.2	mA
MULTIPL	ER INPUT					
I _{MULT}	Input Bias Current	$V_{VFF} = 0$ to 4 V			-1	μA
V _{MULT}	Linear Operation Range		0 to 3			V
$\frac{\Delta V_{\text{CS}}}{\Delta V_{\text{MULT}}}$	Output Max. Slope	V _{MULT} = 0 to 0.5V V _{COMP} = Upper clamp	1.65	1.9		V/V
К	Gain ⁽²⁾	$V_{MULT} = 1 V, V_{COMP} = 4 V$	0.5	0.6	0.7	1/V
ERROR A	MPLIFIER		1			
VINV	Voltage Feedback Input	T _j = 25 °C	2.465	2.5	2.535	V
	Threshold	10.3 V < Vcc < 22 V ⁽¹⁾	2.44		2.56	
	Line Regulation	Vcc = 10.3 V to 22V		2	5	mV
I _{INV}	Input Bias Current	$V_{INV} = 0$ to 3 V			-1	μA

Table 5. Electrical Characteristics (continued)

(T _j = -25 to 125°C, V _{CC} = 12, C _O = 1 nF; unless otherwise specified)
--

Parameter	Test Condition	Min.	Тур.	Max.	Unit
Voltage Gain	Open loop	60	80		dB
Gain-Bandwidth Product			1		MHz
Source Current	$V_{COMP} = 4V, V_{INV} = 2.4 V$	-2	-3.5	-5	mA
Sink Current	$V_{COMP} = 4V, V_{INV} = 2.6 V$	2.5	4.5		mA
Upper Clamp Voltage	I _{SOURCE} = 0.5 mA	5.3	5.7	6	V
Lower Clamp Voltage	$I_{SINK} = 0.5 \text{ mA}^{(1)}$	2.1	2.25	2.4	V
T SENSE COMPARATOR			<u> </u>	<u> </u>	<u> </u>
	$V_{CS} = 0$		İ	-1	μA
•			200	350	ns
	VCOMP = Upper clamp	1.6			V
					mV
			Ū		
	Izcn = 2.5 mA	5.0	5.7	6.5	V
			0.65	1	V
				-	V
(positive-going edge)					
Triggering Voltage (negative-going edge)	(3)		1.6		V
Input Bias Current	V _{ZCD} = 1 to 4.5 V		2		μA
Source Current Capability		-2.5		-5.5	mA
Sink Current Capability		2.5			mA
Disable threshold		150	200	250	mV
Restart threshold				350	mV
Restart Current after Disable		30	75		μA
2					
Start Timer period		75	130	300	μs
-					
Dynamic OVP triggering current		35	40	45	μA
Hysteresis	(3)		30		μA
Static OVP threshold	(1)	2.1	2.25	2.4	V
IVER	•				•
	I _{GDsource} = 20 mA		2	2.6	
Dropout Voltage			2.5	3	V
			0.9	1.9	V
Voltage Fall Time					ns
					ns
Output clamp voltage	I _{GDsource} = 5mA; Vcc = 20V	10	12	15	V
	$1 \cdot G D = 0 \cdot 1 \cdot$	1 10	1 12	1 15	I V
	Voltage GainGain-Bandwidth ProductSource CurrentSink CurrentUpper Clamp VoltageLower Clamp VoltageT SENSE COMPARATORInput Bias CurrentDelay to OutputCurrent sense reference clampCurrent sense offsetRRENT DETECTORUpper Clamp VoltageLower Clamp VoltageLower Clamp Voltage(positive-going edge)Triggering Voltage(negative-going edge)Input Bias CurrentSource Current CapabilityDisable thresholdRestart thresholdRestart Current after DisableStart Timer periodOVERVOLTAGEDynamic OVP triggering currentHysteresisStatic OVP thresholdIVERDropout VoltageVoltage Fall TimeVoltage Rise Time	Voltage GainOpen loopGain-Bandwidth Product $\end{subarray}$ Source Current $\end{subarray}$ Source Current $\end{subarray}$ Sink Current $\end{subarray}$ Upper Clamp Voltage $\end{subarray}$ Lower Clamp Voltage $\end{subarray}$ Lower Clamp Voltage $\end{subarray}$ Input Bias Current $\end{subarray}$ Input Bias Current $\end{subarray}$ Current sense reference clamp $\end{subarray}$ Current sense offset $\end{subarray}$ Upper Clamp Voltage $\end{subarray}$ Lower Clamp Voltage $\end{subarray}$ Upper Clamp Voltage $\end{subarray}$ Lower Clamp Voltage $\end{subarray}$ Upper Clamp Voltage $\end{subarray}$ Ingering Voltage(3)(negative-going edge)(3)Triggering Voltage(3)(negative-going edge)(3)Input Bias Current $\end{subarray}$ Sink Current Capability $\end{subarray}$ Disable threshold $\end{subarray}$ Restart threshold $\end{subarray}$ Restart Current after Disable $\end{subarray}$ Static OVP triggering current $\end{subarray}$ Hysteresis(3)Static OVP threshold(1)VER $\end{subarray}$ Dropout Voltage $\end{subarray}$ $\end{subarray}$ $\end{subarray}$ Voltage Fall Time $\end{subarray}$ Voltage Rise Time $\end{subarray}$	Voltage Gain Open loop 60 Gain-Bandwidth Product	Voltage GainOpen loop6080Gain-Bandwidth Product1Source Current $V_{COMP} = 4V, V_{INV} = 2.4 V$ -2Sink Current $V_{COMP} = 4V, V_{INV} = 2.6 V$ 2.5Jupper Clamp VoltageIsource = 0.5 mA5.3Lower Clamp VoltageIsiNK = 0.5 mA5.3Input Bias Current $V_{CS} = 0$ 200Current sense reference clamp $V_{COMP} = Upper clamp$ 1.6Delay to Output20030Current sense reference clamp $V_{COMP} = Upper clamp$ 1.6Upper Clamp Voltage $I_{ZCD} = 2.5 mA$ 5.0Lower Clamp Voltage $I_{ZCD} = 2.5 mA$ 5.0Jupter Clamp VoltageIzco = -2.5 mA0.3Upper Clamp VoltageIzco = -2.5 mA0.3Ingering Voltage(3)1.6Ingering Voltage(3)2.1Ingering Voltage(3)2.1Input Bias Current $V_{ZCD} = 1$ to 4.5 V2Source Current Capability-2.55Sink Current Capability2.55Disable threshold75130OVERVOLTAGEDynamic OVP triggering current35Mysteresis(3)30Start Timer period75130OVERVOLTAGEDropout VoltageIgDsource = 20 mA2IgDsource = 200 mA2.5IgDsource = 200 mA2.5IgDsource = 200 mA2.5IgDsource = 200 mA2.5IgDsource = 200 mA2.5 <td>Voltage Gain Open loop 60 80 Gain-Bandwidth Product 1 </td>	Voltage Gain Open loop 60 80 Gain-Bandwidth Product 1

(1)

All parameters are in tracking The multiplier output is given by: $V_{cs} = K \cdot V_{MULT} \cdot (V_{COMP} - 2.5)$ Parameters guaranteed by design, functionality tested in production. (1) (2) (3)

3 TYPICAL ELECTRICAL CHARACTERISTICS

Figure 4. Supply current vs. Supply voltage

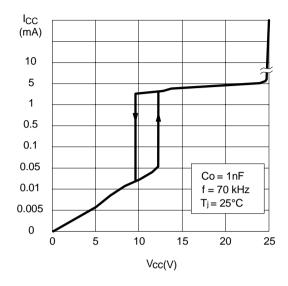
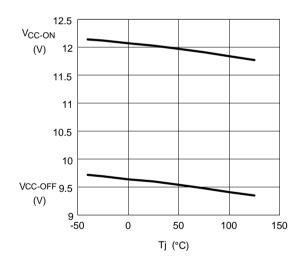
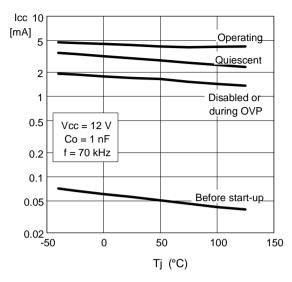
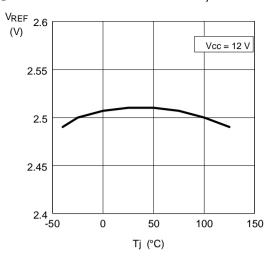
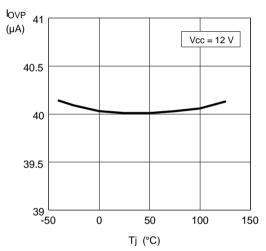



Figure 5. Start-up & UVLO vs. T_j

Figure 6. IC consumption vs. \textbf{T}_{j}


Figure 7. Vcc Zener voltage vs. \textbf{T}_{j}

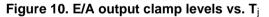


Figure 8. Feedback reference vs. Ti

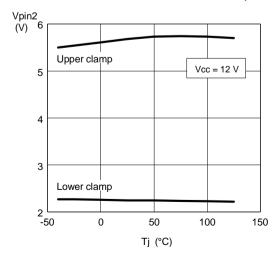
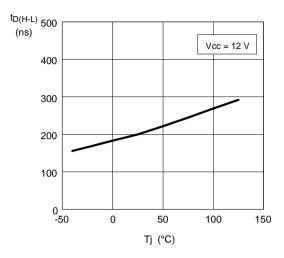



Figure 11. Delay-to-output vs. T_i

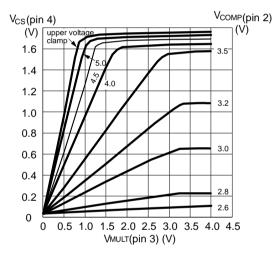
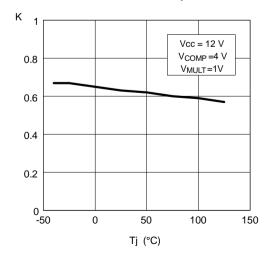
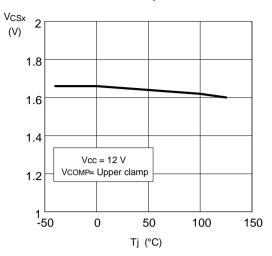
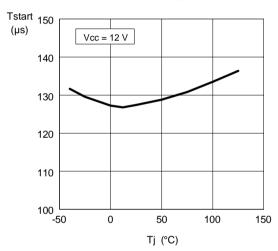
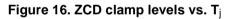
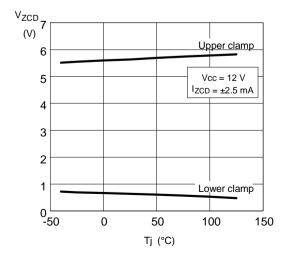
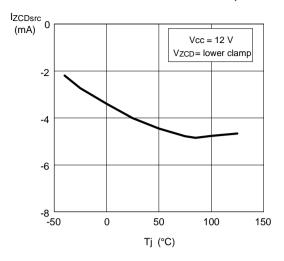




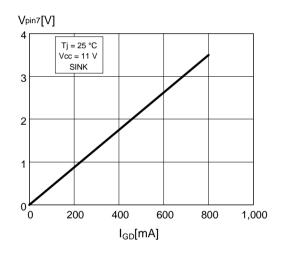
Figure 13. Multiplier gain vs. Tj




Á7/


Figure 14. Vcs clamp vs. T_i





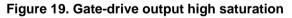


Figure 17. ZCD source capability vs. T_i

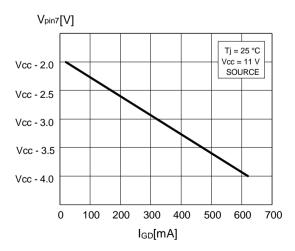


Figure 20. Gate-drive clamp vs. T_i Vpin7clamp Vpin7 1.1 15 (V) (V) Vcc = 20 V 1 14 0.9 13 0.8 12 0.7

150

100

APPLICATION INFORMATION 4

0

50

Tj (°C)

4.1 Overvoltage protection

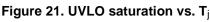
11

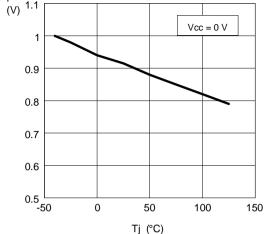
10 [⊾] -50

Under steady-state conditions, the voltage control loop keeps the output voltage Vo of a PFC pre-regulator close to its nominal value, set by the resistors R1 and R2 of the output divider. Neglecting ripple components, the current through R1, I_{R1}, equals that through R2, I_{R2}. Considering that the non-inverting input of the error amplifier is internally referenced at 2.5V, also the voltage at pin INV will be 2.5V, then:

$$I_{R2} = \frac{2.5}{R2} = I_{R1} = \frac{Vo - 2.5}{R1}$$

If the output voltage experiences an abrupt change $\Delta Vo > 0$ due to a load drop, the voltage at pin INV will be kept at 2.5V by the local feedback of the error amplifier, a network connected between pins INV and COMP that introduces a long time constant to achieve high PF (this is why ΔVo can be large). As a result, the current through R2 will remain equal to 2.5/R2 but that through R1 will become:

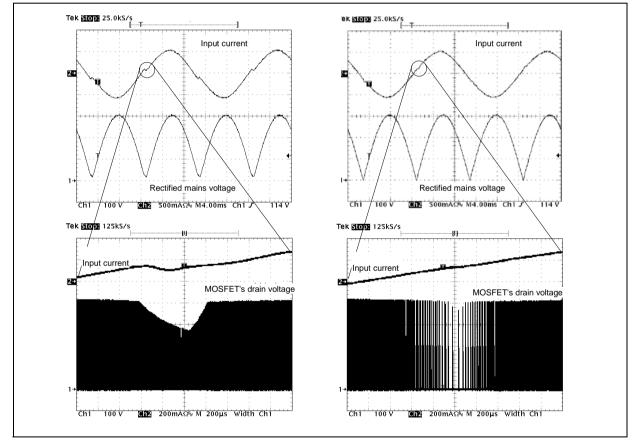

$$I'_{R1} = \frac{Vo - 2.5 + \Delta Vo}{R1}$$


The difference current $\Delta I_{R1} = I'_{R1} - I_{R2} = I'_{R1} - I_{R1} = \Delta V_0/R1$ will flow through the compensation network and enter the error amplifier output (pin COMP). This current is monitored inside the L6562 and if it reaches about 37 µA the output voltage of the multiplier is forced to decrease, thus smoothly reducing the energy delivered to the output. As the current exceeds 40 µA, the OVP is triggered (Dynamic OVP): the gate-drive is forced low to switch off the external power transistor and the IC put in an idle state. This condition is maintained until the current falls below approximately 10 µA, which re-enables the internal starter and allows switching to restart. The output ΔVo that is able to trigger the Dynamic OVP function is then:

$$\Delta Vo = R1 \cdot 40 \cdot 10^{-6}$$

An important advantage of this technique is that the OV level can be set independently of the regulated output voltage: the latter depends on the ratio of R1 to R2, the former on the individual value of R1. Another advantage is the precision: the tolerance of the detection current is 12%, that is 12% tolerance on ΔVo . Since $\Delta Vo \ll Vo$, the tolerance on the absolute value will be proportionally reduced.

Example: Vo = 400 V, Δ Vo = 40 V. Then: R1=40V/40µA=1M Ω ; R2=1M Ω ·2.5/(400-2.5)=6.289k Ω . The tolerance on the OVP level due to the L6562 will be 40.0.12=4.8V, that is 1.2% of the regulated value.


When the load of a PFC pre-regulator is very low, the output voltage tends to stay steadily above the nominal value, which cannot be handled by the Dynamic OVP. If this occurs, however, the error amplifier output will saturate low; hence, when this is detected, the external power transistor is switched off and the IC put in an idle state (Static OVP). Normal operation is resumed as the error amplifier goes back into its linear region. As a result, the L6562 will work in burst-mode, with a repetition rate that can be very low.

When either OVP is activated the quiescent consumption of the IC is reduced to minimize the discharge of the Vcc capacitor and increase the hold-up capability of the IC supply system.

4.2 THD optimizer circuit

The L6562 is equipped with a special circuit that reduces the conduction dead-angle occurring to the AC input current near the zero-crossings of the line voltage (crossover distortion). In this way the THD (Total Harmonic Distortion) of the current is considerably reduced.

A major cause of this distortion is the inability of the system to transfer energy effectively when the instantaneous line voltage is very low. This effect is magnified by the high-frequency filter capacitor placed after the bridge rectifier, which retains some residual voltage that causes the diodes of the bridge rectifier to be reverse-biased and the input current flow to temporarily stop.

Figure 22. THD optimization: standard TM PFC controller (left side) and L6562 (right side)

To overcome this issue the circuit embedded in the L6562 forces the PFC pre-regulator to process more energy near the line voltage zero-crossings as compared to that commanded by the control loop. This will result in both minimizing the time interval where energy transfer is lacking and fully discharging the high-frequency filter capacitor after the bridge. The effect of the circuit is shown in figure 23, where the key waveforms of a standard TM PFC controller are compared to those of the L6562.

Essentially, the circuit artificially increases the ON-time of the power switch with a positive offset added to

the output of the multiplier in the proximity of the line voltage zero-crossings. This offset is reduced as the instantaneous line voltage increases, so that it becomes negligible as the line voltage moves toward the top of the sinusoid.

To maximally benefit from the THD optimizer circuit, the high-frequency filter capacitor after the bridge rectifier should be minimized, compatibly with EMI filtering needs. A large capacitance, in fact, introduces a conduction dead-angle of the AC input current in itself - even with an ideal energy transfer by the PFC preregulator - thus making the action of the optimizer circuit little effective.

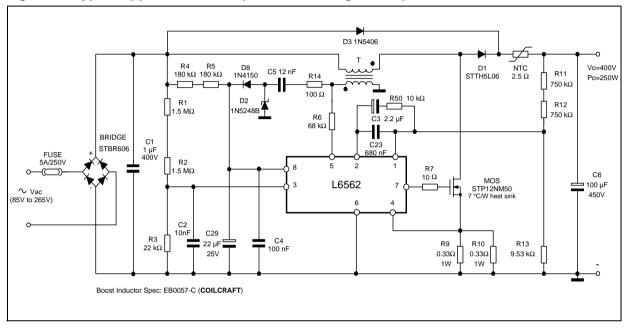
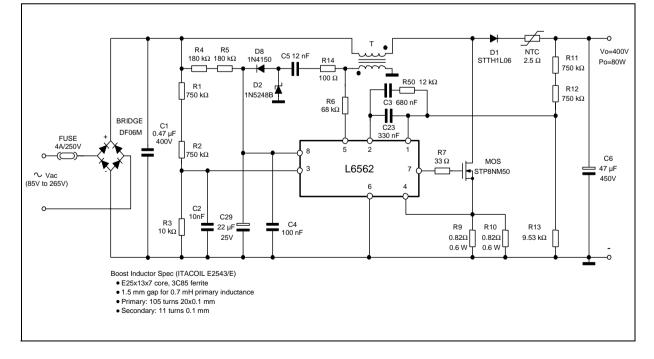
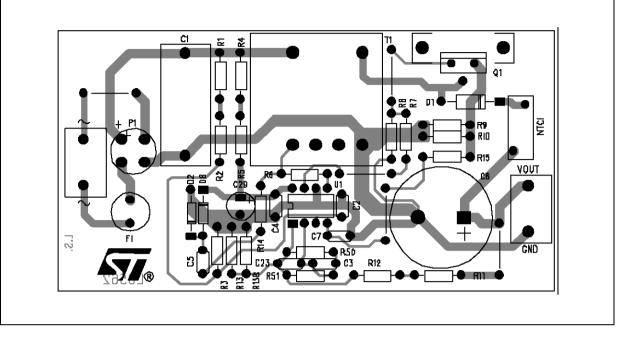




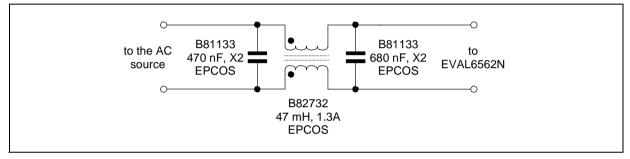
Figure 23. Typical application circuit (250W, Wide-range mains)

Figure 24. Demo board (EVAL6562-80W, Wide-range mains): Electrical schematic

Figure 25. EVAL6562-80W: PCB and component layout (Top view, real size: 57 x 108 mm)

Table 6. EVAL6562N: Evaluation results at full load

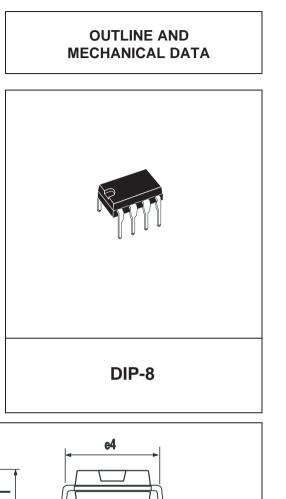
Vin (V _{AC})	Pin (W)	Vo (V _{DC})	∆Vo(V _{pk-pk})	Po (W)	η (%)	PF	THD (%)		
85	86.4	394.79	12.8	80.16	92.8	0.998	3.6		
110	84.6	394.86	12.8	80.20	94.8	0.996	4.2		
135	83.8	394.86	12.8	80.20	95.7	0.991	4.9		
175	83.2	394.87	15.5	80.20	96.4	0.981	6.5		
220	82.9	394.87	15.7	80.20	96.7	0.956	7.8		
265	82.7	394.87	15.9	80.20	97.0	0.915	9.2		
Note: measurem	lote: measurements done with the line filter shown in figure 23								


Table 7. EVAL6562N: Evaluation results at half load

Vin (V _{AC})	Pin (W)	Vo (V _{DC})	∆Vo(V _{pk-pk})	Po (W)	ղ (%)	PF	THD (%)		
85	42.8	394.86	6.6	40.20	93.9	0.994	5.5		
110	42.5	394.90	6.6	40.20	94.6	0.985	6.2		
135	42.5	394.91	6.7	40.20	94.6	0.967	7.1		
175	42.5	394.93	8.0	40.19	94.6	0.939	8.3		
220	42.6	394.94	8.2	40.19	94.3	0.869	9.8		
265	42.6	394.94	8.3	40.19	94.3	0.776	11.4		
Note: measurem	ote: measurements done with the line filter shown in figure 23								

Vin (V _{AC})	Pin (W)	Vo (V _{DC})	$\Delta Vo(V_{pk-pk})$	Po (W)
85	0.4	396.77	0.45	0
110	0.3	396.82 0.		0
135	0.3	0.3 396.83 0.60		0
175 ^(*)	0.4	396.90	1.00	0
220 ^(*)	0.4	396.95	1.40	0
265 ^(*)	0.5	396.98	1.65	0

Table 8. EVAL6562N: No-load measurements


Figure 26. Line filter (not tested for EMI compliance) used for EVAL6562N evaluation

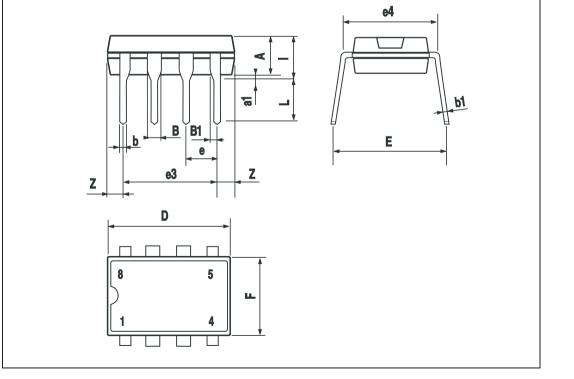
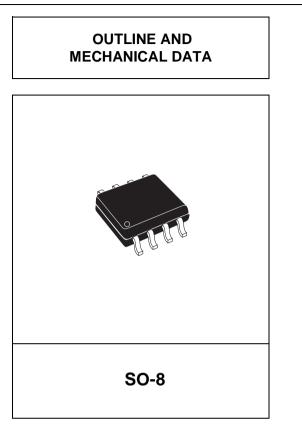


Figure 27. DIP-8 Mechanical Data & Package Dimensions

DIM.		mm		inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А		3.32			0.131		
a1	0.51			0.020			
В	1.15		1.65	0.045		0.065	
b	0.356		0.55	0.014		0.022	
b1	0.204		0.304	0.008		0.012	
D			10.92			0.430	
Е	7.95		9.75	0.313		0.384	
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F	İ		6.6			0.260	
Ι			5.08			0.200	
L	3.18		3.81	0.125		0.150	
Ζ			1.52			0.060	


57

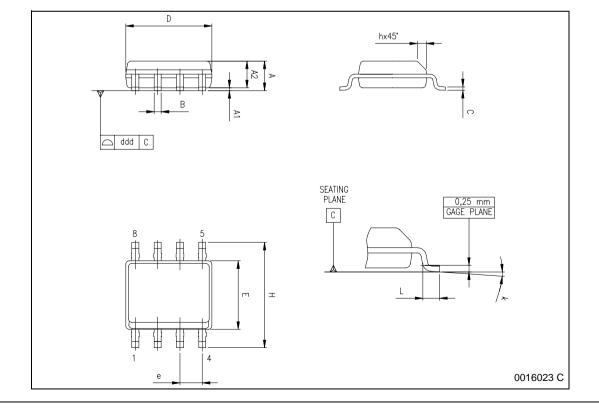


Figure 28. SO-8 Mechanical Data & Package Dimensions

DIM.	mm			inch			
DINI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	1.35		1.75	0.053		0.069	
A1	0.10		0.25	0.004		0.010	
A2	1.10		1.65	0.043		0.065	
В	0.33		0.51	0.013		0.020	
С	0.19		0.25	0.007		0.010	
D ⁽¹⁾	4.80		5.00	0.189		0.197	
Е	3.80		4.00	0.15		0.157	
е		1.27			0.050		
н	5.80		6.20	0.228		0.244	
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
k	0° (min.), 8° (max.)						
ddd			0.10			0.004	
Note: (sions o Mold fla	r gate bu ash, potru	usions or		s shall no	•	

57

Table 9. Revision History

Date	Revision	Description of Changes
January 2004	5	First Issue
June 2004	6	Modified the Style-look in compliance with the "Corporate Technical Publications Design Guide". Changed input of the power amplifier connected to Multiplier (Fig. 2).

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com