1a 10A, 1a1b/2a 8A small polarized power relays

FEATURES

1. Compact with high capacity High capacity switching in a small package: 1 Form A, 10 A 250 V AC;
1 Form A 1 Form B and 2 Form A, 8 A 250 V AC.
2. High sensitivity: $\mathbf{2 0 0} \mathbf{~ m W}$ nominal operating power
3. High breakdown voltage Independent coil and the contact structure improves breakdown voltage.

Between contact and coil	Between open contacts
$4,000 \mathrm{Vrms}$ for 1 min. $10,000 \mathrm{~V}$ surge breakdown voltage	$1,000 \mathrm{Vrms}$ for 1 min. $1,500 \mathrm{~V}$ surge breakdown voltage
Conforms with FCC Part 68	

4. Latching types available
5. Sealed construction allows automatic washing
6. Sockets are available
7. Complies with safety standards Complies with Japan Electrical Appliance and Material Safety Law requirements for operating 200 V power supply circuits, and complies with UL, CSA, and TÜV safety standards.

TYPICAL APPLICATIONS

1. Switching power supply
2. Power switching for various OA equipment
3. Control or driving relays for industrial machines (robotics, numerical control machines, etc.)
4. Output relays for programmable logic controllers, temperature controllers, timers and so on
5. Home appliances

ORDERING INFORMATION

Contact arrangement
1a: 1 Form A
2a: 2 Form A
1a1b: 1 Form A 1 Form B
Operating function
Nil: Single side stable
L2: 2 coil latching
Nominal coil voltage (DC)
3, 5, 6, 9, 12, 24V

Contact material

F: 1 Form A (Au-flashed AgSnO_{2} type)
Nil: 2 Form A, 1 FormA 1 Form B (Au-flashed AgNi type)
Note: VDE approved type is available.

TYPES

Contact arrangement	Nominal coil	Single side stable	2 coil latching
	voltage	Part No.	Part No.
1 Form A	3V DC	DK1a-3V-F	DK1a-L2-3V-F
	5V DC	DK1a-5V-F	DK1a-L2-5V-F
	6V DC	DK1a-6V-F	DK1a-L2-6V-F
	9V DC	DK1a-9V-F	DK1a-L2-9V-F
	12 V DC	DK1a-12V-F	DK1a-L2-12V-F
	24 V DC	DK1a-24V-F	DK1a-L2-24V-F
1 Form A 1 Form B	3V DC	DK1a1b-3V	DK1a1b-L2-3V
	5V DC	DK1a1b-5V	DK1a1b-L2-5V
	6V DC	DK1a1b-6V	DK1a1b-L2-6V
	9V DC	DK1a1b-9V	DK1a1b-L2-9V
	12 V DC	DK1a1b-12V	DK1a1b-L2-12V
	24V DC	DK1a1b-24V	DK1a1b-L2-24V
2 Form A	3V DC	DK2a-3V	DK2a-L2-3V
	5V DC	DK2a-5V	DK2a-L2-5V
	6V DC	DK2a-6V	DK2a-L2-6V
	9 V DC	DK2a-9V	DK2a-L2-9V
	12 V DC	DK2a-12V	DK2a-L2-12V
	24V DC	DK2a-24V	DK2a-L2-24V

Standard packing: Carton: 50 pcs.; Case: 500 pcs.

* Sockets available.

RATING

1. Coil data

1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	66.6 mA	45Ω	200 mW	$130 \% \mathrm{~V}$ of nominal voltage
5V DC			40 mA	125Ω		
6V DC			33.3 mA	180Ω		
9V DC			22.2 mA	405Ω		
12 V DC			16.6 mA	720Ω		
24V DC			8.3 mA	2,880 Ω		

2) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$		Coil resistance$[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$		Nominal operating power		Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	66.6 mA	66.6 mA	45Ω	45Ω	200 mW	200mW	$130 \% \mathrm{~V}$ of nominal voltage
5V DC			40 mA	40 mA	125Ω	125Ω			
6V DC			33.3 mA	33.3 mA	180Ω	180Ω			
9V DC			22.2 mA	22.2 mA	405Ω	405Ω			
12V DC			16.6 mA	16.6 mA	720Ω	720Ω			
24 V DC			8.3 mA	8.3 mA	2,880 2	2,880 Ω			

2. Specifications

Characteristics		Item	Specifications		
Contact	Arrangement		1 Form A	1 Form A 1 Form B	2 Form A
	Contact resistance (Initial)		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)		
	Contact material		Au-flashed AgSnO_{2} type	Au-flashed AgNi type	
Rating	Nominal switching capacity (resistive load)		10 A 250 V AC, 10 A 30 V DC	8 A $250 \mathrm{~V} \mathrm{AC}$,8 A 30 V DC	8 A 250 V AC, 8 A 30 V DC
	Max. switching power (resistive load)		2,500VA, 300 W	2,000 VA, 240 W	$2,000 \mathrm{VA}, 240 \mathrm{~W}$
	Max. switching voltage		250 V AC, 125 V DC (0.2A)	250 V AC, 125 V DC (0.2A)	250 V AC, 125 V DC (0.2A)
	Max. switching current		10 A	8 A	8 A
	Min. switching capacity (Reference value)*1		10 m A 5 V DC		
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M (at 500V DC) Measurement at same location as "Breakdown voltage" section.		
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1 min . (Detection current: 10mA.)		
		Between contact and coil	$4,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)		
	Surge breakdown voltage*2 (Initial)	between contacts and coil	10,000 V		
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms (Approx. 5 ms) [10 ms (Approx. 5 ms)] (Nominal coil voltage applied to the coil, excluding contact bounce time.)		
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 8 ms (Approx. 3 ms) [10 ms (Approx. 3 ms)](Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)		
Mechanical characteristics	Shock resistance	Functional	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)		
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)		
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: $10 \mu \mathrm{~s}$.)		
		Destructive	10 to 55 Hz at double amplitude of 3 mm		
Expected life	Mechanical		Min. 5×10^{7} (at 300 times/min.)		
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+149^{\circ} \mathrm{F}$, Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)		
Unit weight			Approx. 5 g .18 oz	Approx. 6 g .21 oz	Approx. 6 g .21 oz

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
*3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.

3. Electrical life

Condition: Resistive load, at 20 times $/ \mathrm{min}$.

Type	Switching capacity	Number of operations
1 Form A	10 A 250 V AC	Min. 1×10^{5}
	80 V DC	8 A 250 V AC

REFERENCE DATA

1-(1). Maximum operating power (1 Form A)

1-(2). Maximum operating power (1 Form A 1 Form B, 2 Form A)

2-(1). Life curve (1 Form A)

2-(2). Life curve
(1 Form A 1 Form B, 2 Form A)

4-(1). Coil temperature rise (1 Form A) Tested sample: DK1a-12V, 5 pcs.
Ambient temperature: $30^{\circ} \mathrm{C} 86^{\circ} \mathrm{F}$

3-(1). Operate/Release time (1 Form A) Tested sample: DK1a-24V, 5 pcs.

4-(2). Coil temperature rise (1 Form A 1 Form B, 2 Form A) Tested sample: DK1a1b-12V, 5 pcs. Ambient temperature: $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

3-(2). Operate/Release time (1 Form A 1 Form B, 2 Form A) Tested sample: DK1a1b-12V, 5 pcs.

5-(1). Ambient temperature characteristics (1 Form A)
Tested sample: DK1a-24V, 6 pcs
Ambient temperature:
$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{F}$ to $+176^{\circ} \mathrm{F}$

5-(2). Ambient temperature characteristics (1 Form A 1 Form B, 2 Form A)

DIMENSIONS (mm inch)

1. 1 Form A type

CAD Data

External dimensions
Single side stable type

PC board pattern (Bottom view) Single side stable type

2 coil latching type

Tolerance: $\pm 0.1 \pm .004$

Schematic
(Bottom view) Single side stable type

(Deenergized condition)

2 coil latching type

(Reset condition)

Since this is a polarized relay, the connection to the coil should be done according to the above schematic.

2. 1 Form A 1 Form B type, 2 Form A type

CAD Data
External dimensions
Single side stable type

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view) Single side stable type

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)
<1 Form A 1 Form B type> Single side stable type

10	3040
$-\square$	40

(Deenergized condition)
2 coil latching type

Single side stable type

(Deenergized condition)
2 coil latching type

Since this is a polarized relay, the connection to the coil should be done according to the above schematic.

2 coil latching type

General tolerance: $\pm 0.3 \pm .012$

SAFETY STANDARDS

Type	UL/C-UL (Recognized)		CSA (Certified)		TÜV (Certified)	
	File No.	Rating	File No.	Rating	File No.	Rating
1 Form A	E43028	10A 250V AC	LR26550	10A 250V AC	$\begin{gathered} \text { B } 1206 \\ 13461329 \end{gathered}$	10A 250V AC ($\cos \phi=1.0)$
		10A 30V DC		10A 30V DC		10A 30V DC (0ms)
		1/3HP 125, 250V AC		1/3HP 125, 250V AC		5A 250V AC ($\cos \phi=0.4)$
1 Form A 1 Form B, 2 Form A	E43028	8A 250V AC	LR26550	8A 250V AC	$\begin{gathered} \text { B } 1206 \\ 13461329 \end{gathered}$	8A 250V AC $(\cos \phi=1.0)$
		8A 30V DC		8A 30V DC		8A 30V DC (0ms)
		1/4HP 125, 250V AC		1/4HP 125, 250V AC		4A 250V AC $(\cos \phi=0.4)$

Notes: VDE approved type is available. Please contact our company.

INSULATION CHARACTERISTICS (IEC61810-1)

Item	Characteristics
Clearance/Creepage distance (IEC61810-1)	Min. 5.5/5.5mm
Category of protection (IEC61810-1)	RT III
Tracking resistance (IEC60112)	PTI 175
Insulation material group	III a
Over voltage category	III
Rated voltage	250V
Pollution degree	2
Type of insulation (Between contact and coil)	Reinforced insulation
Type of insulation (Between open contacts)	Micro disconnection

Notes: 1. EN/IEC VDE Certified.
2. VDE approved type only.

NOTES

1. For cautions for use, please read "GENERAL APPLICATION
GUIDELINES".
2. Soldering should be done under the following conditions:
1) Preheating: Within $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ and within 120 seconds
2) Soldering iron: $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$500^{\circ} \mathrm{F} \pm 41^{\circ} \mathrm{F}$ and within 6 seconds
3. External magnetic field

Since DK relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.
4. When using, please be aware that the a contact and b contact sides of 1 Form A 1 Form B type may go on simultaneously at operate time and release time.

ACCESSORIES

DKRELAY PC BOARD SOCKETS

RoHS compliant

TYPES

Type		Part No.
	1 Form A	Single side stable
1 Form A 1 Form B,		DK1a-PS
2 Form A	Single side stable	DK1a-PSL2
	2 coil latching	DK2a-PS

Standard packing: Carton: 50 pcs.; Case: 500 pcs

RELAY COMPATIBILITY

| Socket | 1 Form A | | 1 Form A 1 Form B, 2 Form A |
| :--- | :---: | :---: | :---: | :---: | :---: |

SPECIFICATIONS

Item	Specifications
Breakdown voltage (Initial)	4,000 Vrms (Detection current: 10 mA) (Except the portion between coil terminals)
Insulation resistance (Initial)	Min. 1,000 $\mathrm{m} \Omega$ (at 500 V DC)
Heat resistance	$150^{\circ} \mathrm{C}$ (for 1 hour)
Max. continuous current	10 A (DK1a-PS, DK1a-PSL2), $8 \mathrm{~A} \mathrm{(DK2a-PS}, \mathrm{DK2a-PSL2)}$

DIMENSIONS (mm inch)
CAD Data
External dimensions

General tolerance: $\pm 0.3 \pm .012$

The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/ PC board pattern (Bottom view)

1 Form A

1 Form A 1 Form B, 2 Form A

Tolerance: $\pm 0.1 \pm .004$

Note: The above shows 2 coil latching type. No. 2 and 7 terminal are eliminated on single side stable type.

FIXING AND REMOVAL METHOD

1. Match the direction of relay and socket.

2. Both ends of the relay are to be secured firmly so that the socket hooks on the top surface of the relay.

GOOD

NO GOOD
3. Remove the relay, applying force in the direction shown below.

4. In case there is not enough space to grasp relay with fingers, use screwdrivers in the way shown below.

Notes: 1. Exercise care when removing relays. If greater than necessary force is applied at the socket hooks, deformation may alter the dimensions so that the hook will no longer catch, and other damage may also occur. 2. It is hazardous to use IC chip sockets.

Electromechanical Control Business Division
■ 1006, Oaza Kadoma, Kadoma-shi, Osaka 571-8506, Japan industrial.panasonic.com/ac/e/

