

An IATF 16949, ISO9001 and ISO 14001 Certified Company

40Amp TRIACS

BTA41-600/ 800/1200/1600

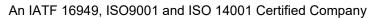
TOP-3 Leaded Plastic Package RoHS compliant

TOP-3

FEATURES:

- 1. High ability to withstand the shock loading of large current
- 2. Provide high dv/dt rate with strong resistance to electromagnetic interface
- 3. High commutation performances

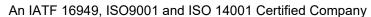
APPLICATIONS:


- 1. On/off function in static relays, heating regulation, induction motor starting circuits
- 2. Phase control operations in light dimmers, motor speed controllers, and similar applications

ABSOLUTE MAXIMUM RATINGS ($T_a = 25 \degree$)

PARAMETER	SYMBO	VALUE	UNIT
Storage junction temperature range	T _{stg}	-40 to 150	°C
Operating junction temperature range	T _j	-40 to 125	°C
Repetitive peak off-state voltage (T _j =25°C)	V_{DRM}	600/800/1200/1600	V
Repetitive peak reverse voltage (T _j =25°C)	V_{RRM}	600/800/1200/1600	V
Non repetitive surge peak Off-state voltage	V_{DSM}	V _{DRM} +100	V
Non repetitive peak reverse voltage	V_{RSM}	V _{RRM} +100	V
RMS on-state current (T _C =80°C)	I _{T(RMS)}	40	Α
Non repetitive surge peak on-state current (full cycle, F=50Hz)	I _{TSM}	400	Α
I2t value for fusing (t _p =10ms)	l ² t	880	A ² s
Critical rate of rise of on-state current (I _G =2×I _{GT})	dl/dt	50	A/µs
Peak gate current	I_{GM}	4	Α
Average gate power dissipation	$P_{G(AV)}$	1	W
Peak gate power	P_{GM}	10	W

BTA41 Rev2_07072021EBJ



ELECTRICAL CHARACTERISTICS at T_a = 25 ℃ (Unless otherwise specified)

3 Quadrants							
PARAMETER	SYMBOL	TEST CONDITIONS	QUADRANT	VALUE		UNITS	
	STWIDOL	WIBOL TEST CONDITIONS QUADRA			BW	CW	DIVITS
Gate Trigger Current	lgт	$V_{D} = 12V R_{I} = 33\Omega$	1 - 11 - 111	MAX	50	35	mA
Gate Trigger Voltage	V _{GT}	VD 12 VIL 0022	1 - 11 - 111	MAX	1.3		V
Off-State Gate Voltage	$V_{\sf GD}$	$V_D = V_{DRM}, T_j = 125$ °C, $R_L = 3.3$ K Ω	1 - 11 - 111	MIN 0.2		.2	V
Latching Current	lι	I _G =1.2I _{GT}	1 - III II	MAX	80 100	70 80	mA
Holding Current	I _H	I _T =100mA		MAX	60	50	mA
Critical Rate of Rise of Off- State Voltage	dV/dt	V _D =2/3V _{DRM,} Gate Open Tj =125°C		MIN	1500	1000	V/µs
4 Quadrants	•						•
Gate Trigger Current			1 - 11 - 111	MAX	5	0	mA
Gate migger Current	l _{GT}	$V_D = 12V R_L = 33\Omega$	IV	IVIAX	7	0	111/
Gate Trigger Voltage	V_{GT}		ALL	MAX	1.3		V
Off-State Gate Voltage	$V_{\sf GD}$	$V_D = V_{DRM}, T_j = 125$ °C, $R_L = 3.3$ K Ω	ALL MIN		0.2		V
Latching Current	IL	I _G =1.2I _{GT}	I - III - IV	MAX	90 100		mA
			II				
Holding Current	l _Η	IT =100mA		MAX	80		mA
Critical Rate of Rise of Off- State Voltage	dV/dt	VD=2/3VDRM Gate Open	Tj=125°C	MIN	1000		V/µs
Maximum Threshold voltage	V_{TM}	ITM =60A tp=380µs	Tj=25°C		1.5		V
Pulsed reverse drain current	I _{DRM}	V _D =V _{DRM}	T _j =25°C	MAX	10		μΑ
Maximum reverse leakage current	I _{RRM}	V _D =V _{DRM} V _R =V _{RRM}	T _j =25°C	IVII OC	5		mA
STATIC CHARACTERISTICS	3						
On-State Voltage	V_{TM}	ITM =60A, tp=380µs,	Tj=25°C	MAX	1.	55	V
Off-State Leakage Current	I _{DRM}	VD =VDRM	T _j =25°C	MAX	1	0	μΑ
	I _{RRM}	VR =VRRM	T _j =125°C	MAX	5		mA
THERMAL RESISTANCES							
Junction to case (AC)	Rth(j-c)				1	.1	°C/W

Typical Characteristic Curves

FIG.1 Maximum power dissipation versus RMS on-state current

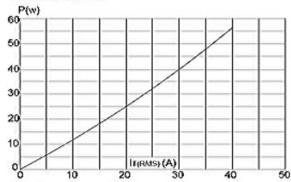


FIG.3: Surge peak on-state current versus number of cycles

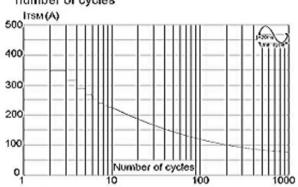


FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp<20ms, and corresponging value of I't (dl/dt < 50A/µs)

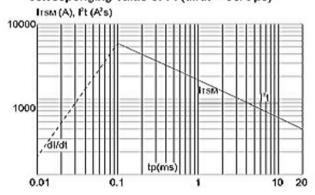


FIG.2: RMS on-state current versus case temperature

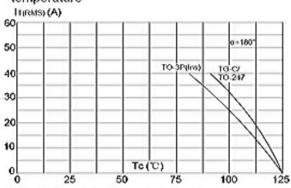


FIG.4: On-state characteristics (maximum values)

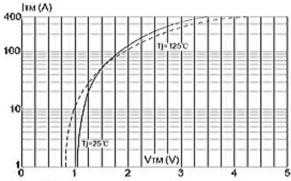
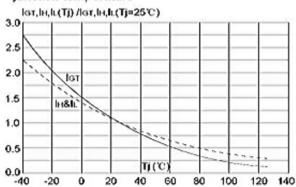
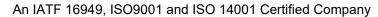
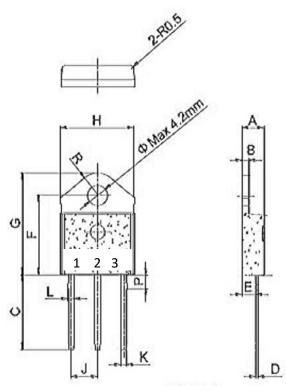




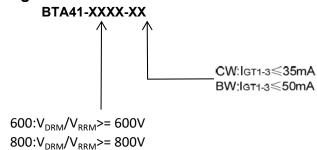
FIG.6: Relative variations of gate trigger current, holding current and latching current versus junction temperature



Package Details

TOP-3 Leaded Plastic Package

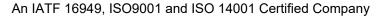
	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	4.40		4.60	0.173		0.181	
В	1.45		1.55	0.057		0.061	
С	14.35		15.60	0.565		0.614	
D	0.60		0.70	0.020		0.028	
ε	2.70		2.90	0.108		0.114	
۴	15.80		16.50	0.622		0.650	
G	20.40		21.10	0.803		0.831	
Н	15.10		15.50	0.594		0.610	
J	5.40		5.65	0.213		0.222	
K	1.10		1.40	0.043		0.055	
L	1.35		1.50	0.053		0.059	
Р	2.80		3.00	0.110		0.118	
R		4.35			0.171		


Pin Confugration

Pin 1: T1

Pin 2: T2

Pin 3: Gate


Ordering Information

BTA41 Rev2_07072021EBJ

1200:V_{DRM}/V_{RRM}>= 1200V

Recommended Product Storage Environment for Discrete Semiconductor Devices

This storage environment assumes that the Diodes and transistors are packed properly inside the original packing supplied by CDIL.

- Temperature 5 °C to 30 °C
- Humidity between 40 to 70 %RH
- Air should be clean.
- Avoid harmful gas or dust.
- · Avoid outdoor exposure or storage in areas subject to rain or water spraying .
- Avoid storage in areas subject to corrosive gas or dust. Product shall not be stored in areas exposed to direct sunlight.
- · Avoid rapid change of temperature.
- · Avoid condensation.
- Mechanical stress such as vibration and impact shall be avoided.
- The product shall not be placed directly on the floor.
- The product shall be stored on a plane area. They should not be turned upside down. They should not be placed against the wall.

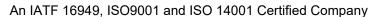
Shelf Life of CDIL Products

The shelf life of products is the period from product manufacture to shipment to customers. The product can be unconditionally shipped within this period. The period is defined as 2 years.

If products are stored longer than the shelf life of 2 years the products shall be subjected to quality check as per CDIL quality procedure.

The products are further warranted for another one year after the date of shipment subject to the above conditions in CDIL original packing.

Floor Life of CDIL Products and MSL Level


When the products are opened from the original packing, the floor life will start.

For this, the following JEDEC table may be referred:

JEDEC MSL Level					
Level	Time	Condition			
1	Unlimited	≤30 °C / 85% RH			
2	1 Year	≤30 °C / 60% RH			
2a	4 Weeks	≤30 °C / 60% RH			
3	168 Hours	≤30 °C / 60% RH			
4	72 Hours	≤30 °C / 60% RH			
5	48 Hours	≤30 °C / 60% RH			
5a	24 Hours	≤30 °C / 60% RH			
6	Time on Label(TOL)	≤30 °C / 60% RH			

BTA41 Rev2 07072021EBJ

Customer Notes

Component Disposal Instructions

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered trademark of

Continental Device India Pvt. Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India. Telephone +91-11-2579 6150, 4141 1112 Fax +91-11-2579 5290, 4141 1119 email@cdil.com www.cdil.com

CIN No. U32109DL1964PTC004291

BTA41 Rev2_07072021EBJ