
SDC-14610/15 Series Three Channel 14- and 16-Bit **Tracking S/D Converters**

DESCRIPTION

The SDC-14610/15 Series are small low cost three channel synchroor resolver-to-digital converters. The SDC-14610 Series is fixed at 14 bits, the SDC-14615 at 16 bits. The three channels are independent tracking types but share digital output pins and a common reference.

The SDC-14610/15 "S" option offers synthesized reference circuitry to correct for phase shifts between the reference and the signal voltage.

The velocity output (VEL) from the SDC-14610/15 Series, which can be used to replace a tachometer, is a 4 V signal referenced to ground with a linearity of 1% of output voltage.

A BIT output is optional and is a logic line that indicates LOS (Loss Of Signal) or excessive converter error and LOR (Loss Of Reference - option "S" only). Due to pin limitations this option will exclude the velocity output. (See option "T".)

SDC-14610/15 Series converters are available with operating temperature ranges of 0°C to +70°C and -55°C to +125°C, and MIL-PRF-38534 processing is available.

APPLICATIONS

With its low cost, small size, high accuracy, and versatile performance, the SDC-14610/15 Series converters are ideal for use in modern high-performance military and industrial position control systems. Typical applications include radar antenna positioning, navigation and fire control systems, motor control, and robotics.

Data Device Corporation 105 Wilbur Place Bohemia, New York 11716 631-567-5600 Fax: 631-567-7358 www.ddc-web.com

- Make sure the next Card you purchase
- Synthesized Reference Option
- Fixed 14- or 16-Bit Resolution
- Small Size 36-Pin DDIP Package
- Three Independent Converters
- Low Cost per Channel

FEATURES

- Velocity Output Eliminates **Tachometer**
- Optional BIT Output (LOS and LOR)
- High Reliability Single Chip Monolithic
- -55°C to +125°C Operating Temperature Range
- MIL-PRF-38534 Processing Available

FOR MORE INFORMATION CONTACT:

Technical Support: 1-800-DDC-5757 ext. 7382

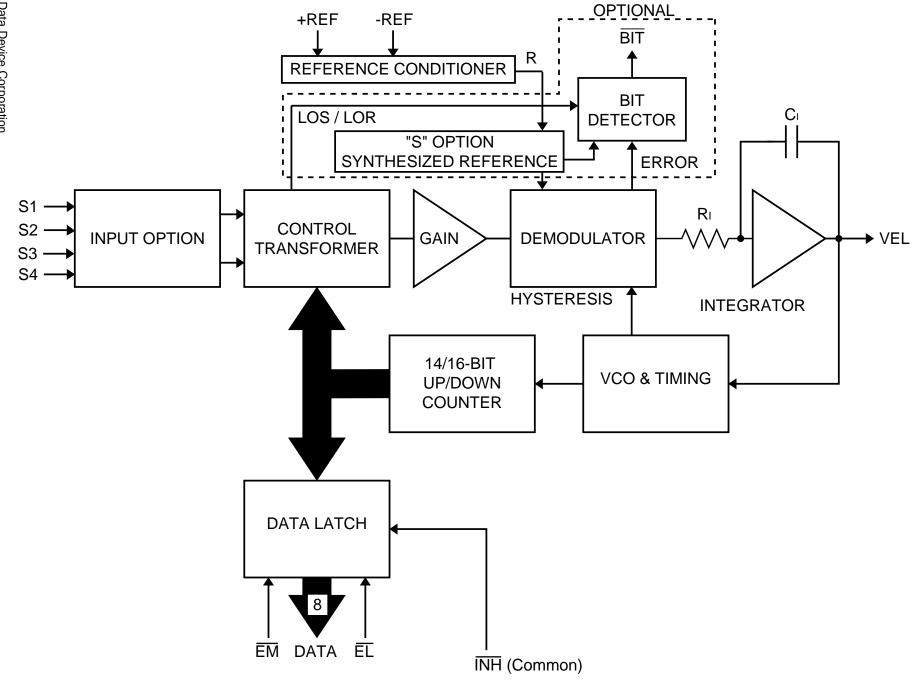


FIGURE 1. SDC-14610/15 BLOCK DIAGRAM (ONE CHANNEL)

TABLE 1. SDC-14610/15 SPECIFICATIONS

These specs apply over the rated power supply, temperature, and reference frequency ranges; 10% signal amplitude variation, and 10% harmonic distortion.

(Values are for each channel unless stated otherwise.)							
PARAMETER	UNIT	VALUE					
RESOLUTION	Bits	14		16			
ACCURACY	Min	4 +1 LSB		+1 LSB _SB ("S" only*)			
REPEATABILITY	LSB	1 max					
DIFFERENTIAL LINEARITY	LSB	1 max					
Type		(+REF, -REF), COMMON TO ALL CHANNELS DIFFERENTIAL					
Valla na Danna	\ /						
Voltage Range Frequency	Vrms Hz	2-35 360-5000		10-130 see note **			
Input Impedance		000 0000		1000 11010			
single ended	Ohm	60k		270k min			
differential Common Mode Range	Ohm Vpeak	120k 50 100 trans	sient	540k min 200,			
Common wode range	VPCCIK	50,100 transient		300 transient			
Option "S"	l , ,	0.05					
Voltage Range Frequency	Vrms Hz	2-35 1k-5k					
Input Impedance	112	TK OK		_			
single ended	Ohm	40k		_			
differential Common Mode Range	Ohm Vpeak	80k 50,100 trans	oiont	_			
±Sig/Ref Phase Shift	deg.	45 max	sierii	_			
SIGNAL INPUT		EACH CHANNEL					
CHARACTERISTICS							
90 V Synchro Input (L-L) Zin line-to-line	Ohm	(Not Availab 123k	ole on "	S" option)			
Zin line-to-ground	Ohm	80k					
Common Mode Voltage	V	180 max					
11.8 V Synchro Input (L-L)		(Not Availab	ole on "	S" option)			
Zin line-to-line	Ohm	52k					
Zin line-to-ground Common Mode Voltage	Ohm V	34k					
	V	30 max					
11.8 V Resolver Input (L-L) Zin line-to-line	Ohm	140k					
Zin line-to-ground	Ohm	-					
Common Mode Voltage	V	30 max					
2 V Direct Input (L-L)		(Not Available on "S" option)		S" option)			
Voltage Range	Vrms V	2 nom, 2.3 max		anaiant			
Max Voltage No Damage Input Impedance	Ohm	25 cont, 100 pk transient 20 M//10 pF min		ansieni			
		· '					
2 V Resolver Input (L-L) Zin single ended	Ohm	("S" option only)					
Zin differential	Ohm	22k					
Common Mode Voltage	V	4.9 max					
DIGITAL INPUT/OUTPUT Logic Type		TTL/CMOS	comp	atible			
Inputs		TTL/CMOS compatible Logic 0 = 0.8 V max					
		Logic 1 = 2					
		Loading (pe max P.U. c		nel) =10 µa			
		+5 V //5 pl		Source IO			
		CMOS tra		protected			
		EACH CHA	ANNEL				
Inhibit (INH)(common)		Logic 0 inhibits; Data		ata			
Enable Dite 4 to 0 (EM)		stable with					
Enable Bits 1 to 8 (EM) Enable Bits 9 to 14(16) (EL)		Logic 0 enables; Data stable within 150 ns					

TABLE 1. SDC 1461	0/15 SP	ECIF	ICAT	TION:	S (C	ONT.)
PARAMETER	UNIT			VAL	<u> </u>	
DIGITAL INPUT/OUTPUT	0	Logic	1 = F			nce
(Cont.)		Logic 1 = High Impedance Data High Z within 100 ns				
OUTPUTS		Common To All Channels				
Parallel Data [1-14(16)]	bits	8 parallel lines; 2 bytes natural			natural	
		binary angle, positive logic			ogic	
Built-In-Test (BIT)				BIT cor		
(Optional)		±100 LSBs of error with a filter of 500 µs or LOS / (LOR-"S" only)				
		EACH CHANNEL			,,	
Drive Capability		50 pF		ETL Io	nd 16	S m A at
Drive Capability	TTL	Logic 0; 1 TTL load, 1.6 mA at 0.4 V max) IIIA at	
					oads,	-0.4 mA
		at 2.8 V min Logic 0; 100 mV max driving			rivina	
			,	V sup		
	CMOS			in driv		
DYNAMIC CHARACTERISTICS		60		e Type		"S" OPTION
Each Channel		60 1	п∠	400 HZ		OI HON
Input Frequency	Hz	47-5 k		360-5 k		1 k-5 k 150
Bandwidth(Closed Loop) Ka	Hz 1/s ²	15 830		103 53k		110k
A1	1/s	0.17		1.33		2.47
A2 A	1/s	5k		40k		44.4k 333
B	1/s 1/s	29 14.5		230 115		166
Resolution	bits	14	16	14	16	16
Tracking Rate typical	rne	1.25	0.31	10	2.5	2.5
minimum	rps rps	1.23	0.25	8	2.5	2.3
Acceleration (1 LSB lag)	deg/s ²	18	4.5	1160		610
Settling Time (179° step max)	msec	1100	2500	140	320	232
VELOCITY			EA	CH CH	IANNI	L EL
CHARACTERISTICS						
Polarity Voltage Range(Full Scale)	±V			increa	asing a	angle
Voltage Scaling	rps/FS	4.5 typ, 4 min 10				
Scale Factor	±%	10 typ 20 max				
Scale Factor TC Reversal Error	ppm/°C ±%	100 typ 200 max 1 typ 2 max				
Linearity	±%	0.5 typ 1 max				
Zero Offset Zero Offset TC	mV	5 typ 10 max				
Load	μV/°C kOhm	15 typ 30 max 20 max				
Noise	(Vp/V)%	1 typ 2 max				
POWER SUPPLIES	\	TOTAL DEVICE				
Nominal Voltage Voltage Range	V ±%	+5 5	- (1	0		
Max Volt. w/o Damage	V	+7 -7				
Current (Ea.)	mA	36 typ, 51 max				
TEMPERATURE RANGE Operating						
-30X	°C	0 to +70				
-10X	°C	-55 to +125 -65 to +150				
Storage PHYSICAL	°C	-65 to	+15(J		
CHARACTERISTICS						
Size	in			x 0.2		
Weight	(mm)	(43.2 0.66(8 x 5.3	3)	
Weight Notes: * Applies to "S" Option	oz(g)	0.00(10.7)			

Notes:

^{*} Applies to "S" Option only ** 47 - 5k for 90 V, 60 Hz; 360 - 5k for 90 V, 400 Hz

THEORY OF OPERATION

The SDC-14610/15 Series of converters are based upon a single chip CMOS custom monolithic. They are implemented using the latest IC technology which merges precision analog circuitry with digital logic to form a complete high performance tracking resolver-to-digital converter.

FIGURE 1 is the Functional Block Diagram of the SDC-14610/15 Series. The converter operates with ± 5 VDC power supplies. Analog signals are referenced to analog ground, which is at ground potential. The converter is made up of three main sections; an input front-end, a converter, and a digital interface. The converter front-end differs for synchro, resolver and direct inputs. An electronic Scott-T is used for synchro inputs, a resolver conditioner for resolver inputs and a sine and cosine voltage follower for direct inputs. These amplifiers feed the high accuracy Control Transformer (CT). Its other input is the 14-bit digital angle ϕ . Its output is an analog error angle, or difference angle, between the two inputs. The CT performs the ratiometric trigonometric computation of SIN θ COS ϕ - COS θ SIN ϕ = SIN $(\theta$ - ϕ) using amplifiers, switches, logic and capacitors in precision ratios.

The converter accuracy is limited by the precision of the computing elements in the CT. In these converters, ratioed capacitors are used in the CT instead of more conventional precision ratioed resistors. Capacitors used as computing elements with op-amps need to be sampled to eliminate voltage drifting. Therefore, the circuits are sampled at a high rate to eliminate this drifting and at the same time to cancel out the op-amp offsets.

The error processing is performed using the industry standard technique for type II tracking R/D converters. The DC error is integrated yielding a velocity voltage which, in turn, drives a voltage controlled oscillator (VCO). This VCO is an incremental integrator (constant voltage input to position rate output) which, together with the velocity integrator, forms a type II servo feedback loop. A lead in the frequency response is introduced to stabilize the loop and another lag at higher frequency is introduced to reduce the gain and ripple at the carrier frequency and above.

TRANSFER FUNCTION AND BODE PLOT

The dynamic performance of the converter can be determined from its functional block diagram and its Bode plots (open and closed loop); these are shown in FIGURES 1 and 2 respectively.

The open loop transfer function is as follows:

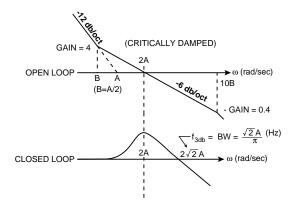
Open Loop Transfer Function =
$$\frac{A^2 \left(\frac{S}{B} + 1\right)}{S^2 \left(\frac{S}{10B} + 1\right)}$$

where A is the gain coefficient and B is the frequency of lead compensation

The components of gain coefficient are error gradient, integrator gain, and VCO gain. These can be broken down as follows:

- Error Gradient = 0.011 volts per LSB (CT + Error Amp + Demod)
- Integrator Gain = $\frac{1}{R_i C_i}$ volts per second per volt
- VCO Gain = $\frac{1}{1.25 R_V C_V}$ LSBs per second per volt

GENERAL SETUP CONSIDERATIONS


The following recommendations should be considered when connecting the SDC-14610/15 Series converters:

- 1) Power supplies are ± 5 VDC. For lowest noise performance it is recommended that a 0.1 μF or larger cap be connected from each supply to ground near the converter package.
- 2) Direct inputs are referenced to AGND.
- 3) Connect pin 5 (GND) to pin 6 (AGND) close to the hybrid.

INHIBIT AND ENABLE TIMING

The Inhibit (INH) signal is used to freeze the digital output angle in the transparent output data latch while data is being transferred. Application of an Inhibit signal does not interfere with the continuous tracking of the converter. As shown in FIGURE 3, angular output data is valid 500 nanoseconds maximum after the application of the low-going inhibit pulse.

Output angle data is enabled onto the tri-state data bus in six bytes. The Enable MSB (\overline{EM} -A, \overline{EM} -B, or \overline{EM} -C) is used for the most significant 8 bits and Enable LSB (\overline{EL} -A, \overline{EL} -B, or \overline{EL} -C) is used for the least significant bits. As shown in FIGURE 4, output data is valid 150 nanoseconds maximum after the application of a low-going enable pulse. The tri-state data bus returns to the high impedance state 100 nanoseconds maximum after the rising edge of the enable signal.

FIGURE 2. BODE PLOTS

BIT, BUILT-IN-TEST ("T" OPTION)

This output is a logic line that will flag an internal fault condition, or LOS (Loss-Of-Signal). The internal fault detector monitors the internal error and, when it exceeds ± 100 LSBs, will set the line to a logic 0; this condition will occur during a large-step input and will reset to a logic 1 after the converter settles out. (The error voltage is filtered with a 500 μs filter) \overline{BIT} will set for an overvelocity condition because the converter loop can't maintain input/output sync. \overline{BIT} will also be set if a total LOS (loss of all signals) occurs or an LOR (loss of reference - "S" option only) occurs.

NO FALSE 180° HANGUP

This feature eliminates the "false 180° reading" during instantaneous 180° step changes; this condition most often occurs when the input is "electronically switched" from a digital-to-synchro converter. If the "MSB" (or 180° bit) is "toggled" on and off, a converter without the "false 180° reading" feature may fail to respond.

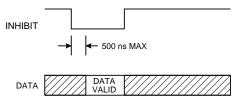
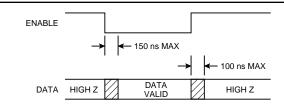
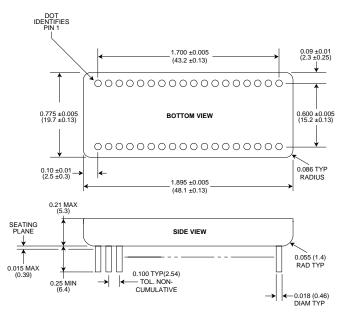


FIGURE 3. INHIBIT TIMING

	TABLE 2. PINOUTS (36 PIN) (SEE NOTE 1)					
1	S1A(S)	S1A(R)	N.C.	36	VEL A (Velocity Output) (see Note 2)	
2	S2A(S)	S2A(R)	+COSA(D)	36	EM-A (Enable MSBs)	
3	S3A(S)	S3A(R)	+SINA(D)	34	EL-A (Enable LSBs)	
4	N.C.	S4A(R)	N.C.	33	INH (Inhibit)	
5	GND (Ground)(see Note 4)		32	VEL B (Velocity Output) (see Note 2)		
6	AGND (Analog Ground) (see Note 4) 31		31	EM-B (Enable MSBs)		
7	S1B(S)	S1B(R)	N.C.	30	EL-B (Enable LSBs)	
8	S2B(S)	S2B(R)	+COSB(D)	29	Bit 8/Bit 16 (see Note 3)	
9	S3B(S)	S3B(R)	+SINB(D)	28	Bit 7/Bit 15 (see Note 3)	
10	N.C.	S4B(R)	N.C.	27	Bit 6/Bit 14	
11	-5 V (Power Supply)		26	Bit 5/Bit 13		
12	+5 V (Powe	er Supply)		25	Bit 4/Bit 12	
13	S1C(S)	S1C(R)	N.C.	24	Bit 3/Bit 11	
14	S2C(S)	S2C(R)	+COSC(D)	23	Bit 2/Bit 10	
15	S3C(S)	S3C(R)	+SINC(D)	22	Bit 1/Bit 9	
16	N.C.	S4C(R)	N.C.	21	VEL C (Velocity Output) (see Note 2)	
17	-REF (-Refe	erence Input)		20	EL-C (Enable LSBs)	
18	+REF (+Reference Input)		19	EM-C (Enable MSBs)		


Notes: 1. (S) = Synchro; (R) = Resolver; (D) = 2 V Resolver Direct

- 2. Replaced with BIT "T" option
- 3. SDC-14615 Series only
- 4. Connect pin 5 (GND) to pin 6 (AGND) close to the hybrid


The condition is artificial, as a "real" synchro or resolver cannot change its output 180° instantaneously. The condition is most often noticed during wraparound verification tests, simulations, or troubleshooting.

SYNTHESIZED REFERENCE

The synthesized reference section ("S" option) eliminates errors due to phase shift between the reference and signal inputs. Quadrature voltages in a resolver or synchro are by definition the resulting 90° fundamental signal in the nulled out error voltage (e) in the converter. Due to the inductive nature of synchros and resolvers, their output signals lead the reference input signal (RH and RL). When an uncompensated reference signal is used to demodulate the control transformer's output, quadrature voltages are not completely eliminated. As shown in FIGURE 1, the converter synthesizes its own internal reference signal based on the SIN and COS signal inputs. Therefore, the phase of the synthesized (internal) reference is determined by the signal input, resulting in reduced quadrature errors. The synthesized reference circuit also eliminates the 180 degree false error null hang up.

FIGURE 4. ENABLE TIMING

Notes:

- 1. Dimensions are in inches (millimeters).
- 2. Lead identification numbers are for reference only.
- Lead clusters shall be centered within ±0.01 of outline dimensions. Lead spacing dimensions apply only at seating plane.
- 4. Pin material meets solderability requirements to MIL-STD-202E, Method 208C.
- Case is electrically floating.

FIGURE 5. SDC-14610/15 MECHANICAL OUTLINE

ORDERING INFORMATION

Supplemental Process Requirements:
S = Pre-Cap Source Inspection

L = Pull Test

SDC-1461XX-XXXX

```
Q = Pull Test and Pre-Cap Inspection
    K = One Lot Date Code
    W = One Lot Date Code and PreCap Source
    Y = One Lot Date Code and 100% Pull Test
    Z = One Lot Date Code, PreCap Source and 100% Pull Test
    Blank = None of the Above
Accuracy:
    2 = 4 \text{ minutes} + 1 \text{ LSB}
    4 = 2 minutes + 1 LSB (Not available with 14-bit units.)
    5 = 1 minute + 1 LSB (Available with "S" option only.)
Process Requirements:
    0 = Standard DDC Processing, no Burn-In (See TABLE 3)
    1 = MIL-PRF-38534 Compliant
    2 = B^*
    3 = MIL-PRF-38534 Compliant with PIND Testing
    4 = MIL-PRF-38534 Compliant with Solder Dip
    5 = MIL-PRF-38534 Compliant with PIND Testing and Solder Dip
    6 = B* with PIND Testing
    7 = B* with Solder Dip
    8 = B* with PIND Testing and Solder Dip
    9 = Standard DDC Processing with Solder Dip, no Burn-In (See TABLE 3)
Temperature Grade/Data Requirements:
    1 = -55^{\circ}C to +125^{\circ}C
    2 = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}
    3 = 0^{\circ}C \text{ to } +70^{\circ}C
    4 = -55°C to +125°C with Variables Test Data
    5 = -40°C to +85°C with Variables Test Data
    8 = 0^{\circ}C to +70°C with Variables Test Data
Option:
    Blank = Standard Velocity Output (VEL)
    T = Built-In-Test Output (LOS and LOR), instead of VEL
    S = Synthesized Reference with Built-In-Test Output instead of VEL (Only
        available with input option 6 or 8)
Input Option:
    0 = 11.8 V, Synchro, 14 bit, 400 Hz
    1 = 11.8 V, Resolver, 14 bit, 400 Hz
    2 = 90 V, Synchro, 14 bit, 400 Hz
    3 = 2 V, Direct, 14 bit, 400 Hz
    4 = 90 V, Synchro, 14 bit, 60 Hz
    5 = 11.8 V, Synchro, 16 bit, 400 Hz
    6 = 11.8 V, Resolver, 16 bit, 400 Hz (1kHz with "S" option)
    7 = 90 V, Synchro, 16 bit, 400 Hz
    8 = 2 V, Direct 16 bit, 400 Hz (2V, Differential 16 Bit, 1kHz for option "S" only)
    9 = 90 V, Synchro, 16 bit, 60 Hz
```

^{*}Standard DDC Processing with burn-in and full temperature test—see TABLE 3 on next page.

TABLE 3. STANDARD DDC PROCESSING					
TEST	MIL-STD-883				
1231	METHOD(S)	CONDITION(S)			
INSPECTION	2009, 2010, 2017, and 2032	_			
SEAL	1014	A and C			
TEMPERATURE CYCLE	1010	С			
CONSTANT ACCELERATION	2001	А			
BURN-IN	1015, TABLE 1	_			

The information in this data sheet is believed to be accurate; however, no responsibility is assumed by Data Device Corporation for its use, and no license or rights are granted by implication or otherwise in connection therewith.

Specifications are subject to change without notice.

105 Wilbur Place, Bohemia, New York, U.S.A. 11716-2482

For Technical Support - 1-800-DDC-5757 ext. 7382

Headquarters, N.Y., U.S.A. - Tel: (631) 567-5600 ext. 7382, Fax: (631) 567-7358 West Coast, U.S.A. - Tel: (714) 895-9777, Fax: (714) 895-4988 Southeast, U.S.A. - Tel: (703) 450-7900, Fax: (703) 450-6610 United Kingdom - Tel: +44-(0)1635-811140, Fax: +44-(0)1635-32264 Ireland - Tel: +353-21-341065, Fax: +353-21-341568 France - Tel: +33-(0)1-41-16-3424, Fax: +33-(0)1-41-16-3425 Germany - Tel: +49-(0)8141-349-087, Fax: +49-(0)8141-349-089 Japan - Tel: +81-(0)3-3814-7688, Fax: +81-(0)3-3814-7689 World Wide Web - http://www.ddc-web.com

