Datasheet

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF35835
- Class Q Military
- Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

General Description

The MAX9705 3rd-generation, ultra-low EMI, mono, Class D audio power amplifier provides Class AB performance with Class D efficiency. The MAX9705 delivers 2.3 W into a 4Ω load and offers efficiencies above 85%. Active emissions limiting (AEL) circuitry greatly reduces EMI by actively controlling the output FET gate transitions under all possible transient output-voltage conditions. AEL prevents high-frequency emissions resulting from conventional Class D free-wheeling behavior in the presence of an inductive load. Zero dead time (ZDT) technology maintains state-of-the-art efficiency and THD+N performance by allowing the output FETs to switch simultaneously without cross-conduction. A patented spreadspectrum modulation scheme eliminates the need for output filtering found in traditional Class D devices. These design concepts reduce an application's component count and extend battery life.
The MAX9705 offers two modulation schemes: a fixedfrequency (FFM) mode and a spread-spectrum (SSM) mode that further reduces EMI-radiated emissions due to the modulation frequency. The MAX9705 oscillator can be synchronized to an external clock through the SYNC input, allowing the switching frequency to be externally defined. The SYNC input also allows multiple MAX9705s to be cascaded and frequency locked, minimizing interference due to clock intermodulation. The device utilizes a fully differential architecture, a full-bridged output, and comprehensive click-and-pop suppression. The gain of the MAX9705 is set internally (MAX9705A: 6dB, MAX9705B: 12dB, MAX9705C: 15.6dB, MAX9705D: 20 dB), further reducing external component count.
The MAX9705 is available in 10 -pin TDFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm} \times$ 0.8 mm), 10 -pin $\mu \mathrm{MAX®}$, and 12 -bump UCSPTM ($1.5 \mathrm{~mm} \times$ $2 \mathrm{~mm} \times 0.6 \mathrm{~mm}$) packages. The MAX9705 is specified over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications

Cellular Phones
PDAs
MP3 Players
Portable Audio

Selector Guide appears at end of data sheet.
$\mu M A X$ is a registered trademark and UCSP is a trademark of Maxim Integrated Products, Inc.

Features

- Filterless Amplifier Passes FCC-Radiated Emissions Standards with 24in of Cable
- Unique Spread-Spectrum Mode and Active Emissions Limiting (AEL) Achieves Better than 20dB Margin Under FCC Limits
- Zero Dead Time (ZDT) H-Bridge Maintains State-of-the-Art Efficiency and THD+N
- Simple Master-Slave Setup for Stereo Operation
- Up to 90\% Efficiency
- 2.3W into 4Ω (1% THD+N)
- Low 0.02\% THD+N (Pout = 1W, VDD = 5.0V)
- High PSRR (75 dB at 217 Hz)
- Integrated Click-and-Pop Suppression
- Low Quiescent Current (5.4mA)
- Low-Power Shutdown Mode ($0.3 \mu \mathrm{~A}$)
- Short-Circuit and Thermal-Overload Protection
- Available in Thermally Efficient, Space-Saving Packages
$10-$ Pin TDFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$) $10-$ Pin $\mu \mathrm{MAX}$
12-Bump UCSP ($1.5 \mathrm{~mm} \times 2 \mathrm{~mm} \times 0.6 \mathrm{~mm}$)
- Pin-for-Pin Compatible with the MAX9700 and MAX9712

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9705AETB +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 TDFN-10	ACY
MAX9705AEUB +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-
MAX9705AEBC +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$12 \mathrm{UCSP}-12$	ACH
MAX9705BETB +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 TDFN-10	ACX
MAX9705BEUB+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-
MAX9705BEBC +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$12 \mathrm{UCSP}-12$	ACG

Ordering Information continued at end of data sheet.
+Denotes lead-free package.
EMI Spectrum Diagram

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

ABSOLUTE MAXIMUM RATINGS

$V_{D D}$ to GND.. 6 V
PV ${ }^{\text {DD }}$ to PGND .. 6 V
GND to PGND ..-0.3V to +0.3 V

All Other Pins to GND.................................-0.3V to (VDD +0.3 V)
Continuous Current Into/Out of PVDD/PGND/OUT_........ $\pm 600 \mathrm{~mA}$
Continuous Input Current (all other pins) $\pm 20 \mathrm{~mA}$
Duration of OUT_Short Circuit to GND or PVDD.........Continuous
Duration of Short Circuit Between OUT+ and OUT-Continuous

uol
10-Pin TDFN (derate $24.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)1951.2mW
10-Pin $\mu \mathrm{MAX}$ (derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 444.4 mW
12-Bump UCSP (derate $6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)....... 484 mW
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Bump Temperature (soldering)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathbf{V}_{D D}=\mathbf{P V} \mathbf{D D}=\overline{\mathbf{S H D N}}=\mathbf{3 . 3 V}, G N D=P G N D=0 \mathrm{~V}, \mathrm{SYNC}=G N D(F F M), R_{L}=\infty, R_{L}\right.$ connected between OUT + and OUT-, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=P V_{D D}=\overline{S H D N}=3.3 V, G N D=P G N D=0 V, S Y N C=G N D(F F M), R_{L}=\infty, R_{L}\right.$ connected between OUT + and OUT-, $T_{A}=T_{M I N}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Rise/Fall Time	trise, trall	10\% to 90\%				15		ns
Signal-to-Noise Ratio	SNR	VOUT $=2 \mathrm{~V}_{\text {RMS }}$	BW $=22 \mathrm{~Hz}$	FFM		91		dB
			to 22kHz	SSM		89		
			A-weighted	FFM		93		
				SSM		91		
Oscillator Frequency	fosc	SYNC = GND			980	1100	1220	kHz
		SYNC = float			1250	1450	1650	
		SYNC = VDD (SSM mode)			± 120			
SYNC Frequency Lock Range					800		2000	kHz
Efficiency	η	POUT $=800 \mathrm{~mW}$	1kHz, $\mathrm{R}_{\mathrm{L}}=8$			89		\%

DIGITAL INPUTS (SHDN, SYNC)

Input Thresholds	V_{IH}	2		V
	VIL		0.8	
$\overline{\text { SHDN }}$ Input Leakage Current		0.1	± 10	$\mu \mathrm{A}$
SYNC Input Current	(Note 5)	-1.25	± 10	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS

$\left(\mathbf{V}_{\mathbf{D D}}=\mathbf{P V} \mathbf{D D}=\overline{\mathbf{S H D N}}=\mathbf{5 V}, G N D=P G N D=0 V, S Y N C=G N D(F F M), R L=\infty, R L\right.$ connected between OUT + and OUT-, $T_{A}=T_{M I N}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

Note 1: All devices are 100% production tested at $+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 2: Testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For $R L=4 \Omega, L=33 \mu H$. For $R L=8 \Omega, L=68 \mu H$. For $R L=16 \Omega, L=136 \mu H$.
Note 3: Inputs AC-coupled to GND
Note 4: Testing performed with 8Ω resistive load in series with $68 \mu \mathrm{H}$ inductive load connected across BTL output. Mode transitions are controlled by $\overline{\text { SHDN }}$ pin. KCP level is calculated as $20 \times$ log[(peak voltage under normal operation at rated power level)/(peak voltage during mode transition, no input signal)]. Units are expressed in dB.
Note 5: SYNC has a $1 \mathrm{M} \Omega$ resistor to $\mathrm{V}_{\text {REF }}=1.25 \mathrm{~V}$.

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

TOTAL HARMONIC DISTORTION
PLUS NOISE vs. FREQUENCY
$\left(\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{SYNC}=\mathrm{V} D \mathrm{D}(\mathrm{SSM})\right.$, differential input, $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Typical Operating Characteristics for 4Ω load condition apply to the MAX9705_ETB+T and MAX9705_EUB+ only.)

TOTAL HARMONIC DISTORTION PLUS NOISE vS. OUTPUT POWER

TOTAL HARMONIC DISTORTION PLUS NOISE vS. FREQUENCY

TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER

TOTAL HARMONIC DISTORTION PLUS NOISE vS. OUTPUT POWER

TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

Typical Operating Characteristics (continued)
$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{SYNC}=\mathrm{V}_{\mathrm{DD}}(\mathrm{SSM})\right.$, differential input, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Typical Operating Characteristics for 4Ω load condition apply to the MAX9705_ETB+T and MAX9705_EUB+ only.)

TOTAL HARMONIC DISTORTION PLUS NOISE vs. COMMON-MODE VOLTAGE

EFFICIENCY
vs. SUPPLY VOLTAGE

TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY

EFFICIENCY
vs. OUTPUT POWER

EfFICIENCY
vs. SYNC FREQUENCY

TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY

EFFICIENCY
vs. OUTPUT POWER

EFFICIENCY
vs. SYNC FREQUENCY

2.3W, UItra-Low-EMI, Filterless, Class D Audio Amplifier

Typical Operating Characteristics (continued)

$\left(V_{D D}=3.3 V, S Y N C=V_{D D}(S S M)\right.$, differential input, $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Typical Operating Characteristics for 4Ω load condition apply to the MAX9705_ETB+T and MAX9705_EUB+ only.)

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

Typical Operating Characteristics (continued)

$\left(V_{D D}=3.3 V, S Y N C=V_{D D}(S S M)\right.$, differential input, $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Typical Operating Characteristics for 4Ω load condition apply to the MAX9705_ETB+T and MAX9705_EUB+ only.)

SUPPLY CURRENT
vs. SUPPLY VOLTAGE

SHUTDOWN CURRENT
vs. SUPPLY VOLTAGE

SUPPLY CURRENT
vs. TEMPERATURE

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

() UCSP BUMP

FIGURE SHOWS MAX9705 CONFIGURED FOR SPREAD-SPECTRUM OPERATION.

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

PIN	BUMP	NAME	FUNCTION
TDFN/ $/$ MAX	UCSP		
1	A1	VDD	Analog Power Supply
2	B1	IN+	Noninverting Audio Input
3	C1	IN-	Inverting Audio Input
4	C2	GND	Analog Ground
5	B2	$\overline{\text { SHDN }}$	Active-Low Shutdown Input. Connect to V ${ }_{\text {DD }}$ for normal operation.
6	A3	SYNC	Frequency Select and External Clock Input. SYNC $=$ GND: Fixed-frequency mode with $\mathrm{fS}=1100 \mathrm{kHz}$. SYNC $=$ Float: Fixed-frequency mode with $\mathrm{fS}=1450 \mathrm{kHz}$. SYNC = VDD: Spread-spectrum mode with fs $=1220 \mathrm{kHz} \pm 120 \mathrm{kHz}$. SYNC = Clocked: Fixed-frequency mode with fs = external clock frequency.
7	B3	PGND	Power Ground
8	A4	OUT+	Amplifier-Output Positive Phase
9	C4	OUT-	Amplifier-Output Negative Phase
10	B4	PVDD	H-Bridge Power Supply

Detailed Description

The MAX9705 ultra-low-EMI, filterless, Class D audio power amplifier features several improvements to switchmode amplifier technology. The MAX9705 features output driver active emissions limiting circuitry to reduce EMI. Zero dead time technology maintains state-of-the-art efficiency and THD +N performance by allowing the output FETs to switch simultaneously without cross-conduction. A unique filterless modulation scheme, synchronizable switching frequency, and spread-spectrum mode create a compact, flexible, low-noise, efficient audio power amplifier while occupying minimal board space. The differential input architecture reduces common-mode noise pickup with or without the use of input-coupling capacitors. The MAX9705 can also be configured as a singleended input amplifier without performance degradation.
Thermal-overload and short-circuit protection prevent the MAX9705 from being damaged during a fault condition. The amplifier is disabled if the die temperature reaches $+125^{\circ} \mathrm{C}$. The die must cool by $10^{\circ} \mathrm{C}$ before normal operation can continue. The output of the MAX9705 shuts down if the output current reaches approximately 2 A . Each output FET has its own short-circuit protection. This protection scheme allows the amplifier to survive shorts to either supply rail. After a thermal overload or short circuit, the device remains disabled for a minimum of $50 \mu \mathrm{~s}$ before attempting to return to normal operation. The amplifier will shut down immediately and wait another $50 \mu \mathrm{~s}$ before turning on if the fault condition is still present. This operation will cause the output to pulse during a persistent fault.

Comparators monitor the MAX9705 inputs and compare the complementary input voltages to the sawtooth waveform. The comparators trip when the input magnitude of the sawtooth exceeds their corresponding input voltage. Both comparators reset at a fixed time after the rising edge of the second comparator trip point, generating a minimum-width pulse $\operatorname{tON}(\mathrm{MIN})$ at the output of the second comparator (Figure 1). As the input voltage increases or decreases, the duration of the pulse at one output increases (the first comparator to trip), while the other output pulse duration remains at $\operatorname{tON(MIN)}$. This causes the net voltage across the speaker (VOUT+ -VOUT-) to change.

Operating Modes
Fixed-Frequency Modulation (FFM) Mode The MAX9705 features two FFM modes. The FFM modes are selected by setting SYNC = GND for a 1.1 MHz switching frequency, and SYNC $=$ FLOAT for a 1.45 MHz switching frequency. In FFM mode, the frequency spectrum of the Class D output consists of the fundamental switching frequency and its associated harmonics (see the Wideband Output Spectrum Fixed-Frequency Mode graph in the Typical Operating Characteristics). The MAX9705 allows the switching frequency to be changed by $+32 \%$, should the frequency of one or more of the harmonics fall in a sensitive band. This can be done at any time and does not affect audio reproduction.

Spread-Spectrum Modulation (SSM) Mode
The MAX9705 features a unique, patented spread-spectrum mode that flattens the wideband spectral components,

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

Figure 1. MAX9705 Outputs with an Input Signal Applied

Table 1. Operating Modes

SYNC INPUT	MODE
GND	FFM with $\mathrm{fs}_{\mathrm{S}}=1100 \mathrm{kHz}$
FLOAT	FFM with $\mathrm{fs}_{\mathrm{S}}=1450 \mathrm{kHz}$
V_{DD}	SSM with $\mathrm{fS}=1220 \mathrm{kHz} \pm 120 \mathrm{kHz}$
Clocked	FFM with $\mathrm{fs}_{\mathrm{S}}=$ external clock frequency

improving EMI emissions by 5dB. Proprietary techniques ensure that the cycle-to-cycle variation of the switching period does not degrade audio reproduction or efficiency (see the Typical Operating Characteristics). Select SSM mode by setting SYNC = VDD. In SSM mode, the switching frequency varies randomly by $\pm 120 \mathrm{kHz}$ around the center frequency (1.22 MHz). The modulation scheme remains the same, but the period of the sawtooth waveform changes from cycle to cycle (Figure 2). Instead of a large amount of spectral energy present at multiples of
the switching frequency, the energy is now spread over a bandwidth that increases with frequency. Above a few megahertz, the wideband spectrum looks like white noise for EMI purposes (see the EMI Spectrum Diagram).

External Clock Mode
The SYNC input allows the MAX9705 to be synchronized to a system clock moving the spectral components of the switching harmonics to insensitive frequency bands. Applying an external TTL clock of 800 kHz to 2 MHz to SYNC synchronizes the switching frequency of the MAX9705. The period of the SYNC clock can be randomized, enabling the MAX9705 to be synchronized to another MAX9705 operating in SSM mode.

Filterless Modulation/Common-Mode IdIe The MAX9705 uses Maxim's unique, patented modulation scheme that eliminates the LC filter required by traditional Class D amplifiers, improving efficiency, reducing component count, and conserving board

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

Figure 2. MAX9705 Output with an Input Signal Applied (SSM Mode)
space and system cost. Conventional Class D amplifiers output a 50% duty cycle square wave when no signal is present. With no filter, the square wave appears across the load as a DC voltage, resulting in a finite load current, increasing power consumption. When no signal is present at the input of the MAX9705, the outputs switch as shown in Figure 3. Because the MAX9705 drives the speaker differentially, the two outputs cancel each other, resulting in no net idle-mode voltage across the speaker, minimizing power consumption.

Efficiency
Efficiency of a Class D amplifier is attributed to the region of operation of the output stage transistors. In a Class D amplifier, the output transistors act as currentsteering switches and consume negligible additional
power. Any power loss associated with the Class D output stage is mostly due to the $I^{2} R$ loss of the MOSFET on-resistance and supply current.
The theoretical best efficiency of a linear amplifier is 78%; however, that efficiency is only exhibited at peak output powers. Under normal operating levels (typical music reproduction levels), efficiency falls below 30\%, whereas the MAX9705 still exhibits $>70 \%$ efficiencies under the same conditions (Figure 4).

Shutdown
The MAX9705 has a shutdown mode that reduces power consumption and extends battery life. Driving SHDN low places the MAX9705 in a low-power ($0.3 \mu \mathrm{~A}$) shutdown mode. Connect $\overline{\text { SHDN }}$ to VDD for normal operation.

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

Figure 3. MAX9705 Outputs with No Input Signal

Click-and-Pop Suppression

The MAX9705 features comprehensive click-and-pop suppression that eliminates audible transients on startup and shutdown. While in shutdown, the H -bridge is in a high-impedance state. During startup or power-up, the input amplifiers are muted and an internal loop sets the modulator bias voltages to the correct levels, preventing clicks and pops when the H-bridge is subsequently enabled. For 30ms following startup, a soft-start function gradually unmutes the input amplifiers.

Applications Information

Filterless Operation

Traditional Class D amplifiers require an output filter to recover the audio signal from the amplifier's output. The filters add cost, increase the solution size of the amplifier, and can decrease efficiency and THD+N performance. The traditional PWM scheme uses large differential output swings ($2 \times$ VDD peak-to-peak) and causes large ripple currents. Any parasitic resistance in the filter components results in a loss of power, lowering the efficiency.
The MAX9705 does not require an output filter. The device relies on the inherent inductance of the speaker coil and the natural filtering of both the speaker and the human ear to recover the audio component of the square-wave output. Eliminating the output filter results in a smaller, less costly, more efficient solution.
Because the frequency of the MAX9705 output is well beyond the bandwidth of most speakers, voice coil movement due to the square-wave frequency is very small. Although this movement is small, a speaker not

Figure 4. MAX9705 Efficiency vs. Class AB Efficiency
designed to handle the additional power can be damaged. For optimum results, use a speaker with a series inductance $>10 \mu \mathrm{H}$. Typical 8Ω speakers exhibit series inductances in the $20 \mu \mathrm{H}$ to $100 \mu \mathrm{H}$ range.

Power-Conversion Efficiency
Unlike a class AB amplifier, the output offset voltage of a Class D amplifier does not noticeably increase quies-cent-current draw when a load is applied. This is due to the power conversion of the Class D amplifier. For example, an 8 mV DC offset across an 8Ω load results in 1 mA extra current consumption in a Class $A B$ device. In the Class D case, an 8 mV offset into 8Ω equates to an additional power drain of $8 \mu \mathrm{~W}$. Due to the high efficiency of the Class D amplifier, this represents an additional quies-cent-current draw of $8 \mu \mathrm{~W} /\left(\mathrm{V}_{D D} / 100 \eta\right)$, which is on the order of a few microamps.

Input Amplifier Differential Input

The MAX9705 features a differential input structure, making it compatible with many CODECs, and offering improved noise immunity over a single-ended input amplifier. In devices such as cellular phones, high-frequency signals from the RF transmitter can be picked up by the amplifier's input traces. The signals appear at the amplifier's inputs as common-mode noise. A differential input amplifier amplifies the difference of the two inputs; any signal common to both inputs is canceled.

Single-Ended Input
The MAX9705 can be configured as a single-ended input amplifier by capacitively coupling either input to GND and driving the other input (Figure 5).

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

Note that the single-ended voltage range of the MAX9705A is 3Vp-p. This limits the achievable output power for this device. Use higher gain versions (MAX9705B, MAX9705C, MAX9705D) if higher output power is desired in a single-ended application.

DC-Coupled Input

The input amplifier can accept DC-coupled inputs that are biased within the amplifier's common-mode range (see the Typical Operating Characteristics). DC coupling eliminates the input-coupling capacitors, reducing component count to potentially one external component (see the System Diagram). However, the low-frequency rejection of the capacitors is lost, allowing low-frequency signals to feed through to the load.

Component Selection

 Input FilterAn input capacitor, CIN , in conjunction with the input resistance of the MAX9705 forms a highpass filter that removes the DC bias from an incoming signal. The ACcoupling capacitor allows the amplifier to bias the signal to an optimum DC level. Assuming zero source impedance, the $-3 d B$ point of the highpass filter is given by:

$$
f_{-3 d B}=\frac{1}{2 \pi R_{I N} C_{I N}}
$$

Choose CIN so f-3dB is well below the lowest frequency of interest. Setting f-3dB too high affects the lowfrequency response of the amplifier. Use capacitors whose dielectrics have low-voltage coefficients, such as tantalum or aluminum electrolytic. Capacitors with high-voltage coefficients, such as ceramics, may result in increased distortion at low frequencies. If a ceramic capacitor is selected due to size constraints, use the largest package possible to minimize voltage coefficient effects. In addition, use $X 7 R$ dielectrics as opposed to Y5V or Z5U.
Other considerations when designing the input filter include the constraints of the overall system and the actual frequency band of interest. Although high-fidelity audio calls for a flat gain response between 20 Hz and 20 kHz , portable voice-reproduction devices such as cellular phones and two-way radios need only concentrate on the frequency range of the spoken human voice (typically 300 Hz to 3.5 kHz). In addition, speakers used in portable devices typically have a poor response below 150 Hz . Taking these two factors into considera-

Figure 5. Single-Ended Input
tion, the input filter may not need to be designed for a 20 Hz to 20 kHz response, saving both board space and cost due to the use of smaller capacitors.

Output Filter

The MAX9705 does not require an output filter. The device passes FCC emissions standards with 24in of unshielded twisted-pair speaker cables. However, an output filter can be used if a design is failing radiated emissions due to board layout or excessive cable length, or the circuit is near EMI-sensitive devices.

Supply Bypassing/Layout
Proper power-supply bypassing ensures low-distortion operation. For optimum performance, bypass VDD to GND and PVDD to PGND with separate $1 \mu \mathrm{~F}$ capacitors as close to each pin as possible. A low-impedance, high-current power-supply connection to PVDD is assumed. Additional bulk capacitance should be added as required depending on the application and powersupply characteristics. GND and PGND should be star connected to system ground. Refer to the MAX9705 evaluation kit for layout guidance.

Stereo Configuration

Two MAX9705s can be configured as a stereo amplifier (Figure 6). Device U1 is the master amplifier; its unfiltered output drives the SYNC input of the slave device (U2), synchronizing the switching frequencies of the two devices. Synchronizing two MAX9705s ensures that no beat frequencies occur within the audio spectrum. This configuration works when the master device is in either FFM or SSM mode. There is excellent THD +N performance and minimal crosstalk between devices due to the SYNC connection (Figures 7 and 8). U2 locks onto only the frequency present at SYNC, not the pulse width. The internal feedback loop of device U2 ensures that the audio component of U1's output is rejected.

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

Figure 6. Master-Slave Stereo Configuration

Figure 7. Master-Slave THD $+N$

Figure 8. Master-Slave Crosstalk

Figure 9a. Single-Ended Drive of MAX9705 Plus Volume
Pin Configurations

Figure 9b. Improved Single-Ended Drive of MAX9705 Plus Volume

Selector Guide

PART	PIN-PACKAGE	GAIN (dB)
MAX9705AETB+T	10 TDFN-10	6
MAX9705AEUB+	$10 \mu \mathrm{MAX}$	6
MAX9705AEBC+T	$12 \mathrm{UCSP}-12$	6
MAX9705BETB+T	10 TDFN-10	12
MAX9705BEUB+	$10 \mu \mathrm{MAX}$	12
MAX9705BEBC+T	$12 \mathrm{UCSP}-12$	12
MAX9705CETB+T	10 TDFN-10	15.6
MAX9705CEUB+	$10 \mu M A X$	15.6
MAX9705CEBC+T	$12 \mathrm{UCSP}-12$	15.6
MAX9705DETB+T	10 TDFN-10	20
MAX9705DEUB+	$10 \mu M A X$	20
MAX9705DEBC+T	$12 \mathrm{UCSP}-12$	20

Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9705CETB +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mathrm{TDFN}-10$	ACZ
MAX9705CEUB +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-
MAX9705CEBC +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$12 \mathrm{UCSP}-12$	ACl
MAX9705DETB +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mathrm{TDFN}-10$	ADA
MAX9705DEUB +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-
MAX9705DEBC +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$12 \mathrm{UCSP}-12$	ACJ

+Denotes lead-free package.

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

TRANSISTOR COUNT: 3595
PROCESS: BICMOS

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS			PACKAGE VARIATIONS							
SYMBOL	MIN.	MAX.	PKG. CODE	N	D2	E2	e	JEDEC SPEC	b	[(N/2)-1] e
A	0.70	0.80	T633-1	6	1.50 ± 0.10	2.30 ± 0.10	0.95 BSC	MO229 / WEEA	0.40 ± 0.05	1.90 REF
D	2.90	3.10	T633-2	6	1.50 ± 0.10	2.30 ± 0.10	0.95 BSC	MO229 / WEEA	0.40 ± 0.05	1.90 REF
E	2.90	3.10	T833-1	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF
A1	0.00	0.05	T833-2	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF
L	0.20	0.40	T833-3	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF
k	0.25 MIN .		T1033-1	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
A2	0.20 REF.		T1033-2	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
			T1433-1	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF
			T1433-2	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF

NOTES:

1. ALL Dimensions are in mm. ANGLES in degrees.
2. COPLANARITY SHALL NOT EXCEED 0.08 mm .
3. WARPAGE SHALL NOT EXCEED 0.10 mm .
4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
5. DRAWING CONFORMS TO JEDEC MO229, EXCEPT DIMENSIONS "D2" AND "E2", AND T1433-1 \& T1433-2.
6. " N " is the total number of leads.
7. number of leads shown are for reference only.
A. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Revision History
Pages changed at Rev 1: 1, 2-7, 9, 11, 13, 16, 20

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

20
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2006 Maxim Integrated Products

Maxim > Products > Amplifiers and Comparators Audio

MAX9705

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier

QuickView Technical Documents Ordering Info More Information All

Ordering Information

Notes:

1. Other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales.
2. Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually within one business day.
3. Part number suffixes: T or $T \& R=$ tape and reel; $+=$ RoHS/lead-free; $\#=$ RoHS/lead-exempt. More: SeeFull Data Sheet or Part Naming Conventions.
4. * Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the product uses.

Devices: 1-16 of $\mathbf{1 6}$

MAX9705	Free Sample	Buy	Pack age: TYPE PINS FOOTPRINT DRAWING CODE/VAR *	Temp	RoHS/Lead-Free? Materials Analysis
MAX9705DETB+			THIN QFN (Dual);10 pin;10 mm Dwg: 21-0137I (PDF) Use pkgcode/variation: T1033+1*	$-40 C$ to +85 C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX9705BETB +			THIN QFN (Dual);10 pin;10 mm Dwg: 21-0137I (PDF) Use pkgcode/variation: T1033+1*	-40 C to +85C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX9705AETB+			THIN QFN (Dual);10 pin;10 mm Dwg: 21-0137I (PDF) Use pkgcode/variation: T1033+1*	$-40 C$ to +85 C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX9705CETB+			THIN QFN (Dual);10 pin; 10 mm Dwg: 21-0137I (PDF) Use pkgcode/variation: T1033+1*	$-40 C$ to $+85 C$	RoHS/Lead-Free: Lead Free Materials Analysis
MAX9705BETB+T			THIN QFN (Dual);10 pin;10 mm Dwg: 21-0137I (PDF) Use pkgcode/variation: T1033+1*	-40 C to +85C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX9705DETB+T			THIN QFN (Dual);10 pin; 10 mm Dwg: 21-0137I (PDF) Use pkgcode/variation: T1033+1*	-40 C to +85C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX9705AETB+T			THIN QFN (Dual);10 pin; 10 mm Dwg: 21-0137I (PDF) Use pkgcode/variation: T1033+1*	$-40 C$ to $+85 C$	RoHS/Lead-Free: Lead Free Materials Analysis
MAX9705CETB+T			THIN QFN (Dual); 10 pin; 10 mm Dwg: 21-0137I (PDF) Use pkgcode/variation: T1033+1*	-40 C to +85C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX9705DEBC+			UCSP;10 pin; 3 mm Dwg: 21-0104F (PDF) Use pkgcode/variation: B12+11*	$-40 C$ to $+85 C$	RoHS/Lead-Free: Lead Free Materials Analysis
MAX9705CEBC+			UCSP;10 pin; 3 mm Dwg: 21-0104F (PDF) Use pkgcode/variation: B12+11*	-40 C to +85C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX9705BEBC +			UCSP;10 pin; 3 mm Dwg: 21-0104F (PDF) Use pkgcode/variation: B12+11*	-40 C to +85C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX9705AEBC +			UCSP;10 pin; 3 mm Dwg: 21-0104F (PDF) Use pkgcode/variation: B12+11*	$-40 C$ to $+85 C$	RoHS/Lead-Free: Lead Free Materials Analysis
MAX9705DEBC+T			UCSP;10 pin; 3 mm Dwg: 21-0104F (PDF) Use pkgcode/variation: B12+11*	$-40 C$ to $+85 C$	RoHS/Lead-Free: Lead Free Materials Analysis

MAX9705CEBC + ${ }^{\text {T }}$	UCSP;10 pin; 3 mm Dwg: 21-0104F (PDF) Use pkgcode/variation: B12+11*	-40 C to +85C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX9705BEBC + T	UCSP;10 pin;3 mm Dwg: 21-0104F (PDF) Use pkgcode/variation: B12+11*	-40 C to +85C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX9705AEBC + T	UCSP;10 pin; 3 mm Dwg: 21-0104F (PDF) Use pkgcode/variation: B12+11*	-40 C to +85C	RoHS/Lead-Free: Lead Free Materials Analysis

Didn't Find What You Need?

- Next Day Product Selection Assistance from Applications Engineers
- Parametric Search
- Applications Help

QuickView

Description

Key Features
A pplications/Uses
Key Specifications
Diagram

Technical Documents
Data Sheet
Application Notes
Design Guides
Engineering Journals
Reliability Reports
Software/Models
Evaluation Kits

Ordering Info

Price and A vailability
Samples
Buy Online
Package Information
Lead-Free Information

More Information

Related Products
Notes and Comments
Evaluation Kits

