SN74AVC16722

ACTIVE

Product details

Number of channels 22 Technology family AVC Supply voltage (min) (V) 1.4 Supply voltage (max) (V) 3.6 Input type Standard CMOS Output type 3-State Clock frequency (max) (MHz) 175 IOL (max) (mA) 12 IOH (max) (mA) -12 Supply current (max) (µA) 40 Features Balanced outputs, Over-voltage tolerant inputs, Partial power down (Ioff), Very high speed (tpd 5-10ns) Operating temperature range (°C) -40 to 85 Rating Catalog
Number of channels 22 Technology family AVC Supply voltage (min) (V) 1.4 Supply voltage (max) (V) 3.6 Input type Standard CMOS Output type 3-State Clock frequency (max) (MHz) 175 IOL (max) (mA) 12 IOH (max) (mA) -12 Supply current (max) (µA) 40 Features Balanced outputs, Over-voltage tolerant inputs, Partial power down (Ioff), Very high speed (tpd 5-10ns) Operating temperature range (°C) -40 to 85 Rating Catalog
TSSOP (DGG) 64 137.7 mm² 17 x 8.1
  • Member of the Texas Instruments WidebusTM Family
  • EPICTM (Enhanced-Performance Implanted CMOS) Submicron Process
  • DOCTM (Dynamic Output Control) Circuit Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation
  • Dynamic Drive Capability Is Equivalent to Standard Outputs With IOH and IOL of ±24 mA at 2.5-V VCC
  • Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class I
  • Packaged in Thin Shrink Small-Outline Package

    DOC, EPIC, and Widebus are trademarks of Texas Instruments.

  • Member of the Texas Instruments WidebusTM Family
  • EPICTM (Enhanced-Performance Implanted CMOS) Submicron Process
  • DOCTM (Dynamic Output Control) Circuit Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation
  • Dynamic Drive Capability Is Equivalent to Standard Outputs With IOH and IOL of ±24 mA at 2.5-V VCC
  • Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class I
  • Packaged in Thin Shrink Small-Outline Package

    DOC, EPIC, and Widebus are trademarks of Texas Instruments.

A Dynamic Output Control (DOC) circuit is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical VOL vs IOL and VOH vs IOH curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, AVC Logic Family Technology and Applications, literature number SCEA006, and Dynamic Output Control (DOCTM ) Circuitry Technology and Applications, literature number SCEA009.

This 22-bit flip-flop is operational at 1.2-V to 3.6-V VCC, but is designed specifically for 1.65-V to 3.6-V VCC operation.

The 22 flip-flops of the SN74AVC16722 are edge-triggered D-type flip-flops with clock-enable (CLKEN\) input. On the positive transition of the clock (CLK) input, the device stores data into the flip-flops if CLKEN\ is low. If CLKEN\ is high, no data is stored.

A buffered output-enable (OE\) input places the 22 outputs in either a normal logic state (high or low) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. OE\ does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The SN74AVC16722 is characterized for operation from -40°C to 85°C.

A Dynamic Output Control (DOC) circuit is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical VOL vs IOL and VOH vs IOH curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, AVC Logic Family Technology and Applications, literature number SCEA006, and Dynamic Output Control (DOCTM ) Circuitry Technology and Applications, literature number SCEA009.

This 22-bit flip-flop is operational at 1.2-V to 3.6-V VCC, but is designed specifically for 1.65-V to 3.6-V VCC operation.

The 22 flip-flops of the SN74AVC16722 are edge-triggered D-type flip-flops with clock-enable (CLKEN\) input. On the positive transition of the clock (CLK) input, the device stores data into the flip-flops if CLKEN\ is low. If CLKEN\ is high, no data is stored.

A buffered output-enable (OE\) input places the 22 outputs in either a normal logic state (high or low) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. OE\ does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The SN74AVC16722 is characterized for operation from -40°C to 85°C.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Similar functionality to the compared device
SN74LVC574A ACTIVE Octal Edge-Triggered D-Type Flip-Flop With 3-State Outputs Higher average drive strength (24mA), longer average propagation delay (5.5ns)

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 14
Type Title Date
* Data sheet 22-Bit Flip-Flop With 3-State Outputs datasheet (Rev. H) 29 Jun 2000
Application note Power-Up Behavior of Clocked Devices (Rev. B) PDF | HTML 15 Dec 2022
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
Application note Voltage Translation Between 3.3-V, 2.5-V, 1.8-V, and 1.5-V Logic Standards (Rev. B) 30 Apr 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
More literature LCD Module Interface Application Clip 09 May 2003
User guide AVC Advanced Very-Low-Voltage CMOS Logic Data Book, March 2000 (Rev. C) 20 Aug 2002
More literature Standard Linear & Logic for PCs, Servers & Motherboards 13 Jun 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 22 May 2002
Application note Dynamic Output Control (DOC) Circuitry Technology And Applications (Rev. B) 07 Jul 1999
Application note AVC Logic Family Technology and Applications (Rev. A) 26 Aug 1998

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Package Pins Download
TSSOP (DGG) 64 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos