Product details

Number of channels 2 Output type Push-Pull Propagation delay time (µs) 1.1 Vs (max) (V) 16 Vs (min) (V) 4 Vos (offset voltage at 25°C) (max) (mV) 5 Iq per channel (typ) (mA) 0.009 Input bias current (±) (max) (nA) 0.03 Rail-to-rail In to V- Rating HiRel Enhanced Product Operating temperature range (°C) -55 to 125 VICR (max) (V) 15 VICR (min) (V) 0
Number of channels 2 Output type Push-Pull Propagation delay time (µs) 1.1 Vs (max) (V) 16 Vs (min) (V) 4 Vos (offset voltage at 25°C) (max) (mV) 5 Iq per channel (typ) (mA) 0.009 Input bias current (±) (max) (nA) 0.03 Rail-to-rail In to V- Rating HiRel Enhanced Product Operating temperature range (°C) -55 to 125 VICR (max) (V) 15 VICR (min) (V) 0
SOIC (D) 8 29.4 mm² 4.9 x 6
  • Controlled Baseline
    • One Assembly/Test Site, One Fabrication Site
  • Extended Temperature Performance of –55°C to 125°C
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product Change Notification
  • Qualification Pedigree
  • Push-Pull CMOS Output Drives Capacitive Loads Without Pullup Resistor, IO = ± 8 mA
  • Very Low Power . . . 100 uW Typ at 5 V
  • Fast Response Time ...tPLH = 2.7 us Typ With 5-mV Overdrive
  • Single-Supply Operation ...4 V to 16 V
  • On-Chip ESD Protection

Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.
LinCMOS is a trademark of Texas Instruments Incorporated.

  • Controlled Baseline
    • One Assembly/Test Site, One Fabrication Site
  • Extended Temperature Performance of –55°C to 125°C
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product Change Notification
  • Qualification Pedigree
  • Push-Pull CMOS Output Drives Capacitive Loads Without Pullup Resistor, IO = ± 8 mA
  • Very Low Power . . . 100 uW Typ at 5 V
  • Fast Response Time ...tPLH = 2.7 us Typ With 5-mV Overdrive
  • Single-Supply Operation ...4 V to 16 V
  • On-Chip ESD Protection

Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.
LinCMOS is a trademark of Texas Instruments Incorporated.

The TLC3702 consists of two independent micropower voltage comparators designed to operate from a single supply and be compatible with modern HCMOS logic systems. They are functionally similar to the LM339 but use one-twentieth of the power for similar response times. The push-pull CMOS output stage drives capacitive loads directly without a power-consuming pullup resistor to achieve the stated response time. Eliminating the pullup resistor not only reduces power dissipation, but also saves board space and component cost. The output stage is also fully compatible with TTL requirements.

Texas Instruments LinCMOS™ process offers superior analog performance to standard CMOS processes. Along with the standard CMOS advantages of low power without sacrificing speed, high input impedance, and low bias currents, the LinCMOS™ process offers extremely stable input offset voltages with large differential input voltages. This characteristic makes it possible to build reliable CMOS comparators.

The TLC3702 consists of two independent micropower voltage comparators designed to operate from a single supply and be compatible with modern HCMOS logic systems. They are functionally similar to the LM339 but use one-twentieth of the power for similar response times. The push-pull CMOS output stage drives capacitive loads directly without a power-consuming pullup resistor to achieve the stated response time. Eliminating the pullup resistor not only reduces power dissipation, but also saves board space and component cost. The output stage is also fully compatible with TTL requirements.

Texas Instruments LinCMOS™ process offers superior analog performance to standard CMOS processes. Along with the standard CMOS advantages of low power without sacrificing speed, high input impedance, and low bias currents, the LinCMOS™ process offers extremely stable input offset voltages with large differential input voltages. This characteristic makes it possible to build reliable CMOS comparators.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 4
Type Title Date
* Data sheet Dual Micropower LinCMOS? Voltage Comparator datasheet 16 Jul 2002
* VID TLC3702-EP VID V6203643 21 Jun 2016
* Radiation & reliability report TLC3702MDREP Reliability Report (Rev. A) 17 Aug 2012
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins Download
SOIC (D) 8 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos