Product details

Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Number of channels 8 IOL (max) (mA) 64 IOH (max) (mA) -32 Input type TTL-Compatible CMOS Output type 3-State Features Partial power down (Ioff), Very high speed (tpd 5-10ns) Technology family ABT Rating Catalog Operating temperature range (°C) -40 to 85
Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Number of channels 8 IOL (max) (mA) 64 IOH (max) (mA) -32 Input type TTL-Compatible CMOS Output type 3-State Features Partial power down (Ioff), Very high speed (tpd 5-10ns) Technology family ABT Rating Catalog Operating temperature range (°C) -40 to 85
SOIC (DW) 28 184.37 mm² 17.9 x 10.3 SSOP (DL) 28 98.6355 mm² 9.53 x 10.35
  • Members of the Texas Instruments SCOPETM Family of Testability Products
  • Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
  • Functionally Equivalent to 'F543 and 'ABT543 in the Normal-Function Mode
  • SCOPETM Instruction Set
    • IEEE Standard 1149.1-1990 Required Instructions, Optional INTEST, CLAMP, and HIGHZ
    • Parallel-Signature Analysis at Inputs With Masking Option
    • Pseudo-Random Pattern Generation From Outputs
    • Sample Inputs/Toggle Outputs
    • Binary Count From Outputs
    • Even-Parity Opcodes
  • Two Boundary-Scan Cells Per I/O for Greater Flexibility
  • State-of-the-Art EPIC-IIBTM BiCMOS Design Significantly Reduces Power Dissipation
  • Package Options Include Plastic Small-Outline (DW) and Shrink Small-Outline (DL) Packages, Ceramic Chip Carriers (FK), and Standard Ceramic DIPs (JT)


SCOPE and EPIC-IIB are trademarks of Texas Instruments Incorporated.

  • Members of the Texas Instruments SCOPETM Family of Testability Products
  • Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
  • Functionally Equivalent to 'F543 and 'ABT543 in the Normal-Function Mode
  • SCOPETM Instruction Set
    • IEEE Standard 1149.1-1990 Required Instructions, Optional INTEST, CLAMP, and HIGHZ
    • Parallel-Signature Analysis at Inputs With Masking Option
    • Pseudo-Random Pattern Generation From Outputs
    • Sample Inputs/Toggle Outputs
    • Binary Count From Outputs
    • Even-Parity Opcodes
  • Two Boundary-Scan Cells Per I/O for Greater Flexibility
  • State-of-the-Art EPIC-IIBTM BiCMOS Design Significantly Reduces Power Dissipation
  • Package Options Include Plastic Small-Outline (DW) and Shrink Small-Outline (DL) Packages, Ceramic Chip Carriers (FK), and Standard Ceramic DIPs (JT)


SCOPE and EPIC-IIB are trademarks of Texas Instruments Incorporated.

The 'ABT8543 scan test devices with octal registered bus transceivers are members of the Texas Instruments SCOPETM testability integrated-circuit family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit-board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

In the normal mode, these devices are functionally equivalent to the 'F543 and 'ABT543 octal registered bus transceivers. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self-test on the boundary-test cells. Activating the TAP in normal mode does not affect the functional operation of the SCOPETM octal registered bus transceivers.

 

Data flow in each direction is controlled by latch-enable ( and ), chip-enable ( and ), and output-enable ( and ) inputs. For A-to-B data flow, the device operates in the transparent mode when and are both low. When either or is high, the A data is latched. The B outputs are active when and are both low. When either or is high, the B outputs are in the high-impedance state. Control for B-to-A data flow is similar to that for A-to-B, but uses , , and .

In the test mode, the normal operation of the SCOPETM registered bus transceiver is inhibited and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs boundary-scan test operations as described in IEEE Standard 1149.1-1990.

Four dedicated test pins control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry performs other testing functions such as parallel-signature analysis (PSA) on data inputs and pseudo-random pattern generation (PRPG) from data outputs. All testing and scan operations are synchronized to the TAP interface.

The SN54ABT8543 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT8543 is characterized for operation from -40°C to 85°C.

 

 

 

The 'ABT8543 scan test devices with octal registered bus transceivers are members of the Texas Instruments SCOPETM testability integrated-circuit family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit-board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

In the normal mode, these devices are functionally equivalent to the 'F543 and 'ABT543 octal registered bus transceivers. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self-test on the boundary-test cells. Activating the TAP in normal mode does not affect the functional operation of the SCOPETM octal registered bus transceivers.

 

Data flow in each direction is controlled by latch-enable ( and ), chip-enable ( and ), and output-enable ( and ) inputs. For A-to-B data flow, the device operates in the transparent mode when and are both low. When either or is high, the A data is latched. The B outputs are active when and are both low. When either or is high, the B outputs are in the high-impedance state. Control for B-to-A data flow is similar to that for A-to-B, but uses , , and .

In the test mode, the normal operation of the SCOPETM registered bus transceiver is inhibited and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs boundary-scan test operations as described in IEEE Standard 1149.1-1990.

Four dedicated test pins control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry performs other testing functions such as parallel-signature analysis (PSA) on data inputs and pseudo-random pattern generation (PRPG) from data outputs. All testing and scan operations are synchronized to the TAP interface.

The SN54ABT8543 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT8543 is characterized for operation from -40°C to 85°C.

 

 

 

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Pin-for-pin with same functionality to the compared device
SN74AHCT245 ACTIVE Octal bus transceivers with tri-state outputs Larger voltage range (2V to 5.5V)

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 21
Type Title Date
* Data sheet Scan Test Devices With Octal Registered Bus Tranceivers datasheet (Rev. E) 01 Jul 1996
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
EVM User's guide LASP Demo Board User's Guide 01 Nov 2005
Application note Programming CPLDs Via the 'LVT8986 LASP 01 Nov 2005
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
Application note Quad Flatpack No-Lead Logic Packages (Rev. D) 16 Feb 2004
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 May 2002
Selection guide Advanced Bus Interface Logic Selection Guide 09 Jan 2001
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note Advanced BiCMOS Technology (ABT) Logic Characterization Information (Rev. B) 01 Jun 1997
Application note Designing With Logic (Rev. C) 01 Jun 1997
Application note Advanced BiCMOS Technology (ABT) Logic Enables Optimal System Design (Rev. A) 01 Mar 1997
Application note Family of Curves Demonstrating Output Skews for Advanced BiCMOS Devices (Rev. A) 01 Dec 1996
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 May 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation model

BSDL Model of SN74ABT8543

SCTM007.ZIP (2 KB) - BSDL Model
Package Pins Download
SOIC (DW) 28 View options
SSOP (DL) 28 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos