SN65HVD1040

ACTIVE

Industrial CAN Transceiver with Ultra Low Power Standby Mode with Bus Wake-up

A newer version of this product is available

open-in-new Compare alternates
Same functionality with different pin-out to the compared device
TCAN1044A-Q1 ACTIVE Enhanced automotive CAN transceiver with standby Higher bus fault, data rate/no SPLIT pin

Product details

Protocols CAN Number of channels 1 Supply voltage (V) 4.75 to 5.25 Bus fault voltage (V) -27 to 40 Signaling rate (max) (Bits) 1000000 Rating Catalog
Protocols CAN Number of channels 1 Supply voltage (V) 4.75 to 5.25 Bus fault voltage (V) -27 to 40 Signaling rate (max) (Bits) 1000000 Rating Catalog
SOIC (D) 8 29.4 mm² 4.9 x 6
  • Improved Drop-in Replacement for the TJA1040
  • ±12 kV ESD Protection
  • Low-Current Standby Mode With Bus Wakeup:
    5 µA Typical
  • Bus-Fault Protection of –27 V to 40 V
  • Rugged Split-Pin Bus Stability
  • Dominant Time-Out Function
  • Power-Up/Down Glitch-Free Bus Inputs and
    Outputs
    • High Input Impedance With Low VCC
    • Monotonic Outputs During Power Cycling
  • DeviceNet™ Vendor ID Number 806
  • Improved Drop-in Replacement for the TJA1040
  • ±12 kV ESD Protection
  • Low-Current Standby Mode With Bus Wakeup:
    5 µA Typical
  • Bus-Fault Protection of –27 V to 40 V
  • Rugged Split-Pin Bus Stability
  • Dominant Time-Out Function
  • Power-Up/Down Glitch-Free Bus Inputs and
    Outputs
    • High Input Impedance With Low VCC
    • Monotonic Outputs During Power Cycling
  • DeviceNet™ Vendor ID Number 806

The SN65HVD1040 meets or exceeds the specifications of the ISO 11898 standard for use in applications employing a Controller Area Network (CAN). As a CAN bus transceiver, the SN65HVD1040 device provides differential transmit and receive capability for a CAN controller at signaling rates of up to 1 Mbps(1).

Designed for operation in especially harsh environments, the device features ±12 kV ESD protection on the bus and split pins, cross-wire, overvoltage and loss of ground protection from –27 V to 40 V, overtemperature shutdown, a –12 V to 12 V common-mode range, and will withstanding voltage transients from –200 V to 200 V according to ISO 7637.

The STB input (pin 8) selects between two different modes of operation; high-speed or low-power mode. The high-speed mode of operation is selected by connecting STB to ground.

If a high logic level is applied to the STB pin of the SN65HVD1040, the device enters a low-power bus-monitor standby mode. While the SN65HVD1040 is in the low-power bus-monitor standby mode, a dominant bit greater than 5 μs on the bus is passed by the bus-monitor circuit to the receiver output. The local protocol controller may then reactivate the device when it needs to transmit to the bus.

A dominant time-out circuit in the SN65HVD1040 prevents the driver from blocking network communication during a hardware or software failure. The time-out circuit is triggered by a falling edge on TXD (pin 1). If no rising edge is seen before the time-out constant of the circuit expires, the driver is disabled. The circuit is then reset by the next rising edge on TXD.

The SPLIT output (pin 5) is available on the SN65HVD1040 as a VCC/2 common-mode bus voltage bias for a split-termination network.

The SN65HVD1040 is characterized for operation from –40°C to 125°C.

The SN65HVD1040 meets or exceeds the specifications of the ISO 11898 standard for use in applications employing a Controller Area Network (CAN). As a CAN bus transceiver, the SN65HVD1040 device provides differential transmit and receive capability for a CAN controller at signaling rates of up to 1 Mbps(1).

Designed for operation in especially harsh environments, the device features ±12 kV ESD protection on the bus and split pins, cross-wire, overvoltage and loss of ground protection from –27 V to 40 V, overtemperature shutdown, a –12 V to 12 V common-mode range, and will withstanding voltage transients from –200 V to 200 V according to ISO 7637.

The STB input (pin 8) selects between two different modes of operation; high-speed or low-power mode. The high-speed mode of operation is selected by connecting STB to ground.

If a high logic level is applied to the STB pin of the SN65HVD1040, the device enters a low-power bus-monitor standby mode. While the SN65HVD1040 is in the low-power bus-monitor standby mode, a dominant bit greater than 5 μs on the bus is passed by the bus-monitor circuit to the receiver output. The local protocol controller may then reactivate the device when it needs to transmit to the bus.

A dominant time-out circuit in the SN65HVD1040 prevents the driver from blocking network communication during a hardware or software failure. The time-out circuit is triggered by a falling edge on TXD (pin 1). If no rising edge is seen before the time-out constant of the circuit expires, the driver is disabled. The circuit is then reset by the next rising edge on TXD.

The SPLIT output (pin 5) is available on the SN65HVD1040 as a VCC/2 common-mode bus voltage bias for a split-termination network.

The SN65HVD1040 is characterized for operation from –40°C to 125°C.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 1
Type Title Date
* Data sheet SN65HVD1040 Low-Power CAN Bus Transceiver With Bus Wakeup datasheet (Rev. E) PDF | HTML 26 Aug 2015

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins Download
SOIC (D) 8 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos