Product details

Function Counter Bits (#) 8 Technology family HC Supply voltage (min) (V) 2 Supply voltage (max) (V) 6 Input type Standard CMOS Output type Push-Pull Features Balanced outputs, High speed (tpd 10-50ns), Positive input clamp diode Operating temperature range (°C) -55 to 125 Rating Catalog
Function Counter Bits (#) 8 Technology family HC Supply voltage (min) (V) 2 Supply voltage (max) (V) 6 Input type Standard CMOS Output type Push-Pull Features Balanced outputs, High speed (tpd 10-50ns), Positive input clamp diode Operating temperature range (°C) -55 to 125 Rating Catalog
PDIP (N) 16 181.42 mm² 19.3 x 9.4 SOIC (D) 16 59.4 mm² 9.9 x 6
  • Synchronous or Asynchronous Preset
  • Cascadable in Synchronous or Ripple Mode
  • Fanout (Over Temperature Range)
    • Standard Outputs . . . . 10 LSTTL Loads
    • Bus Driver Outputs . . . . . 15 LSTTL Loads
  • Wide Operating Temperature Range . . . –55°C to 125°C
  • Balanced Propagation Delay and Transition Times
  • Significant Power Reduction Compared to LSTTL Logic ICs
  • HC Types
    • 2V to 6V Operation
    • High Noise Immunity: NIL = 30%, NIH = 30% of VCC at VCC = 5V
  • HCT Types
    • 4.5V to 5.5V Operation
    • Direct LSTTL Input Logic Compatibility, VIL = 0.8V (Max), VIH = 2V (Min)
    • CMOS Input Compatibility, Il 1µA at VOL, VOH

Data sheet acquired from Harris Semiconductor

  • Synchronous or Asynchronous Preset
  • Cascadable in Synchronous or Ripple Mode
  • Fanout (Over Temperature Range)
    • Standard Outputs . . . . 10 LSTTL Loads
    • Bus Driver Outputs . . . . . 15 LSTTL Loads
  • Wide Operating Temperature Range . . . –55°C to 125°C
  • Balanced Propagation Delay and Transition Times
  • Significant Power Reduction Compared to LSTTL Logic ICs
  • HC Types
    • 2V to 6V Operation
    • High Noise Immunity: NIL = 30%, NIH = 30% of VCC at VCC = 5V
  • HCT Types
    • 4.5V to 5.5V Operation
    • Direct LSTTL Input Logic Compatibility, VIL = 0.8V (Max), VIH = 2V (Min)
    • CMOS Input Compatibility, Il 1µA at VOL, VOH

Data sheet acquired from Harris Semiconductor

The ’HC40103 and CD74HCT40103 are manufactured with high speed silicon gate technology and consist of an 8-stage synchronous down counter with a single output which is active when the internal count is zero. The 40103 contains a single 8-bit binary counter. Each has control inputs for enabling or disabling the clock, for clearing the counter to its maximum count, and for presetting the counter either synchronously or asynchronously. All control inputs and the TC\ output are active-low logic.

In normal operation, the counter is decremented by one count on each positive transition of the CLOCK (CP). Counting is inhibited when the TE\ input is high. The TC\ output goes low when the count reaches zero if the TE\ input is low, and remains low for one full clock period.

When the PE\ input is low, data at the P0-P7 inputs are clocked into the counter on the next positive clock transition regardless of the state of the TE\ input. When the PL\ input is low, data at the P0-P7 inputs are asynchronously forced into the counter regardless of the state of the PE\, TE\, or CLOCK inputs. Input P0-P7 represent a single 8-bit binary word for the 40103. When the MR input is low, the counter is asynchronously cleared to its maximum count of 25510, regardless of the state of any other input. The precedence relationship between control inputs is indicated in the truth table.

If all control inputs except TE\ are high at the time of zero count, the counters will jump to the maximum count, giving a counting sequence of 10016 or 25610 clock pulses long.

The 40103 may be cascaded using the TE\ input and the TC\ output, in either a synchronous or ripple mode. These circuits possess the low power consumption usually associated with CMOS circuitry, yet have speeds comparable to low power Schottky TTL circuits and can drive up to 10 LSTTL loads.

The ’HC40103 and CD74HCT40103 are manufactured with high speed silicon gate technology and consist of an 8-stage synchronous down counter with a single output which is active when the internal count is zero. The 40103 contains a single 8-bit binary counter. Each has control inputs for enabling or disabling the clock, for clearing the counter to its maximum count, and for presetting the counter either synchronously or asynchronously. All control inputs and the TC\ output are active-low logic.

In normal operation, the counter is decremented by one count on each positive transition of the CLOCK (CP). Counting is inhibited when the TE\ input is high. The TC\ output goes low when the count reaches zero if the TE\ input is low, and remains low for one full clock period.

When the PE\ input is low, data at the P0-P7 inputs are clocked into the counter on the next positive clock transition regardless of the state of the TE\ input. When the PL\ input is low, data at the P0-P7 inputs are asynchronously forced into the counter regardless of the state of the PE\, TE\, or CLOCK inputs. Input P0-P7 represent a single 8-bit binary word for the 40103. When the MR input is low, the counter is asynchronously cleared to its maximum count of 25510, regardless of the state of any other input. The precedence relationship between control inputs is indicated in the truth table.

If all control inputs except TE\ are high at the time of zero count, the counters will jump to the maximum count, giving a counting sequence of 10016 or 25610 clock pulses long.

The 40103 may be cascaded using the TE\ input and the TC\ output, in either a synchronous or ripple mode. These circuits possess the low power consumption usually associated with CMOS circuitry, yet have speeds comparable to low power Schottky TTL circuits and can drive up to 10 LSTTL loads.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 14
Type Title Date
* Data sheet CD54HC40103, CD74HC40103, CD74HCT40103 datasheet (Rev. D) 16 Oct 2003
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
User guide Signal Switch Data Book (Rev. A) 14 Nov 2003
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
Application note CMOS Power Consumption and CPD Calculation (Rev. B) 01 Jun 1997
Application note Designing With Logic (Rev. C) 01 Jun 1997
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Application note SN54/74HCT CMOS Logic Family Applications and Restrictions 01 May 1996
Application note Using High Speed CMOS and Advanced CMOS in Systems With Multiple Vcc 01 Apr 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

14-24-LOGIC-EVM — Logic product generic evaluation module for 14-pin to 24-pin D, DB, DGV, DW, DYY, NS and PW packages

The 14-24-LOGIC-EVM evaluation module (EVM) is designed to support any logic device that is in a 14-pin to 24-pin D, DW, DB, NS, PW, DYY or DGV package,

User guide: PDF | HTML
Not available on TI.com
Package Pins Download
PDIP (N) 16 View options
SOIC (D) 16 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos