Home Power management DC/DC switching regulators Step-up (boost) regulators Boost converters (integrated switch)

TPS61013

ACTIVE

Low Input Voltage Synchronous Boost Converter with Fixed 2.5V Output

Product details

Topology Boost Vin (min) (V) 0.8 Vin (max) (V) 2.5 Vout (min) (V) 2.5 Vout (max) (V) 2.5 Switch current limit (typ) (A) 0.93 Type Converter Regulated outputs (#) 1 Switching frequency (min) (kHz) 420 Switching frequency (max) (kHz) 780 Iq (typ) (mA) 0.05 Features Enable, Light Load Efficiency, Output discharge, Power good, Synchronous Rectification Duty cycle (max) (%) 100 Operating temperature range (°C) -40 to 125 Rating Catalog
Topology Boost Vin (min) (V) 0.8 Vin (max) (V) 2.5 Vout (min) (V) 2.5 Vout (max) (V) 2.5 Switch current limit (typ) (A) 0.93 Type Converter Regulated outputs (#) 1 Switching frequency (min) (kHz) 420 Switching frequency (max) (kHz) 780 Iq (typ) (mA) 0.05 Features Enable, Light Load Efficiency, Output discharge, Power good, Synchronous Rectification Duty cycle (max) (%) 100 Operating temperature range (°C) -40 to 125 Rating Catalog
VSSOP (DGS) 10 14.7 mm² 3 x 4.9
  • Integrated Synchronous Rectifier for Highest
    Power Conversion Efficiency (> 95%)
  • Start-Up Into Full Load With Supply Voltages as
    Low as 0.9 V, Operating Down to 0.8 V
  • 200-mA Output Current From 0.9-V Supply
  • Powersave-Mode for Improved Efficiency at Low
    Output Currents
  • Autodischarge Allows to Discharge Output
    Capacitor During Shutdown
  • Device Quiescent Current Less Than 50 µA
  • Ease-of-Use Through Isolation of Load From
    Battery During Shutdown of Converter
  • Integrated Antiringing Switch Across Inductor
  • Integrated Low Battery Comparator
  • Micro-Small 10-Pin MSOP or 3 mm × 3 mm QFN
    Package
  • EVM Available (TPS6101xEVM-157)
  • Integrated Synchronous Rectifier for Highest
    Power Conversion Efficiency (> 95%)
  • Start-Up Into Full Load With Supply Voltages as
    Low as 0.9 V, Operating Down to 0.8 V
  • 200-mA Output Current From 0.9-V Supply
  • Powersave-Mode for Improved Efficiency at Low
    Output Currents
  • Autodischarge Allows to Discharge Output
    Capacitor During Shutdown
  • Device Quiescent Current Less Than 50 µA
  • Ease-of-Use Through Isolation of Load From
    Battery During Shutdown of Converter
  • Integrated Antiringing Switch Across Inductor
  • Integrated Low Battery Comparator
  • Micro-Small 10-Pin MSOP or 3 mm × 3 mm QFN
    Package
  • EVM Available (TPS6101xEVM-157)

The TPS6101x devices are boost converters intended for systems that are typically operated from a single- or dual-cell nickel-cadmium (NiCd), nickel-metal hydride (NiMH), or alkaline battery.

The converter output voltage can be adjusted from 1.5 V to a maximum of 3.3 V, by an external resistor divider or, is fixed internally on the chip. The devices provide an output current of 200 mA with a supply voltage of only 0.9 V. The converter starts up into a full load with a supply voltage of only 0.9 V and stays in operation with supply voltages down to 0.8 V.

The converter is based on a fixed frequency, current mode, pulse-width-modulation (PWM) controller that goes automatically into power save mode at light load. It uses a built-in synchronous rectifier, so, no external Schottky diode is required and the system efficiency is improved. The current through the switch is limited to a maximum value of 1300 mA. The converter can be disabled to minimize battery drain. During shutdown, the load is completely isolated from the battery.

An autodischarge function allows discharging the output capacitor during shutdown mode. This is especially useful when a microcontroller or memory is supplied, where residual voltage across the output capacitor can cause malfunction of the applications. When programming the ADEN-pin, the autodischarge function can be disabled. A low-EMI mode is implemented to reduce interference and radiated electromagnetic energy when the converter enters the discontinuous conduction mode. The device is packaged in the micro-small space saving 10-pin MSOP package. The TPS61010 is also available in a 3 mm × 3 mm 10-pin QFN package.

The TPS6101x devices are boost converters intended for systems that are typically operated from a single- or dual-cell nickel-cadmium (NiCd), nickel-metal hydride (NiMH), or alkaline battery.

The converter output voltage can be adjusted from 1.5 V to a maximum of 3.3 V, by an external resistor divider or, is fixed internally on the chip. The devices provide an output current of 200 mA with a supply voltage of only 0.9 V. The converter starts up into a full load with a supply voltage of only 0.9 V and stays in operation with supply voltages down to 0.8 V.

The converter is based on a fixed frequency, current mode, pulse-width-modulation (PWM) controller that goes automatically into power save mode at light load. It uses a built-in synchronous rectifier, so, no external Schottky diode is required and the system efficiency is improved. The current through the switch is limited to a maximum value of 1300 mA. The converter can be disabled to minimize battery drain. During shutdown, the load is completely isolated from the battery.

An autodischarge function allows discharging the output capacitor during shutdown mode. This is especially useful when a microcontroller or memory is supplied, where residual voltage across the output capacitor can cause malfunction of the applications. When programming the ADEN-pin, the autodischarge function can be disabled. A low-EMI mode is implemented to reduce interference and radiated electromagnetic energy when the converter enters the discontinuous conduction mode. The device is packaged in the micro-small space saving 10-pin MSOP package. The TPS61010 is also available in a 3 mm × 3 mm 10-pin QFN package.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Similar functionality to the compared device
TPS610982 ACTIVE Low input voltage, 4.3-V output voltage, synchronous boost converter with integrated LDO For applications requiring ultra-low Iq or smaller package.

Technical documentation

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Package Pins Download
VSSOP (DGS) 10 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos