SN74ABT18504

ACTIVE

Product details

Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Number of channels 20 IOL (max) (mA) 64 IOH (max) (mA) -32 Input type TTL-Compatible CMOS Output type 3-State Features Partial power down (Ioff), Very high speed (tpd 5-10ns) Technology family ABT Rating Catalog Operating temperature range (°C) -40 to 85
Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Number of channels 20 IOL (max) (mA) 64 IOH (max) (mA) -32 Input type TTL-Compatible CMOS Output type 3-State Features Partial power down (Ioff), Very high speed (tpd 5-10ns) Technology family ABT Rating Catalog Operating temperature range (°C) -40 to 85
LQFP (PM) 64 144 mm² 12 x 12
  • Members of the Texas Instruments SCOPE TM Family of Testability Products
  • Members of the Texas Instruments Widebus TM Family
  • Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
  • UBT TM (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
  • Two Boundary-Scan Cells per I/O for Greater Flexibility
  • State-of-the-Art EPIC-IIB TM BiCMOS Design Significantly Reduces Power Dissipation
  • SCOPE TM Instruction Set
    • IEEE Standard 1149.1-1990 Required Instructions, Optional INTEST, and P1149.1A CLAMP and HIGHZ
    • Parallel Signature Analysis at Inputs With Masking Option
    • Pseudo-Random Pattern Generation From Outputs
    • Sample Inputs/Toggle Outputs
    • Binary Count From Outputs
    • Device Identification
    • Even-Parity Opcodes
  • Packaged in 64-Pin Plastic Thin Quad Flat Pack Using 0.5-mm Center-to-Center Spacings and 68-Pin Ceramic Quad Flat Pack Using 25-mil Center-to-Center Spacings

    SCOPE, Widebus, UBT, and EPIC-IIB are trademarks of Texas Instruments Incorporated.

     

     

  • Members of the Texas Instruments SCOPE TM Family of Testability Products
  • Members of the Texas Instruments Widebus TM Family
  • Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
  • UBT TM (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
  • Two Boundary-Scan Cells per I/O for Greater Flexibility
  • State-of-the-Art EPIC-IIB TM BiCMOS Design Significantly Reduces Power Dissipation
  • SCOPE TM Instruction Set
    • IEEE Standard 1149.1-1990 Required Instructions, Optional INTEST, and P1149.1A CLAMP and HIGHZ
    • Parallel Signature Analysis at Inputs With Masking Option
    • Pseudo-Random Pattern Generation From Outputs
    • Sample Inputs/Toggle Outputs
    • Binary Count From Outputs
    • Device Identification
    • Even-Parity Opcodes
  • Packaged in 64-Pin Plastic Thin Quad Flat Pack Using 0.5-mm Center-to-Center Spacings and 68-Pin Ceramic Quad Flat Pack Using 25-mil Center-to-Center Spacings

    SCOPE, Widebus, UBT, and EPIC-IIB are trademarks of Texas Instruments Incorporated.

     

     

The SN54ABT18504 and SN74ABT18504 scan test devices with 20-bit universal bus transceivers are members of the Texas Instruments SCOPETM testability IC family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

In the normal mode, these devices are 20-bit universal bus transceivers that combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPETM universal bus transceivers.

Data flow in each direction is controlled by output-enable ( and ), latch-enable (LEAB and LEBA), clock-enable ( and ), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A-bus data is latched while is high and/or CLKAB is held at a static low or high logic level. Otherwise, if LEAB is low and is low, A-bus data is stored on a low-to-high transition of CLKAB. When is low, the B outputs are active. When is high, the B outputs are in the high-impedance state. B-to-A data flow is similar to A-to-B data flow but uses the , LEBA, , and CLKBA inputs.

In the test mode, the normal operation of the SCOPETM universal bus transceivers is inhibited, and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs boundary scan test operations according to the protocol described in IEEE Standard 1149.1-1990.

Four dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry can perform other testing functions such as parallel signature analysis on data inputs and pseudo-random pattern generation from data outputs. All testing and scan operations are synchronized to the TAP interface.

Additional flexibility is provided in the test mode through the use of two boundary scan cells (BSCs) for each I/O pin. This allows independent test data to be captured and forced at either bus (A or B). A PSA/COUNT instruction is also included to ease the testing of memories and other circuits where a binary count addressing scheme is useful.

The SN54ABT18504 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT18504 is characterized for operation from -40°C to 85°C.

The SN54ABT18504 and SN74ABT18504 scan test devices with 20-bit universal bus transceivers are members of the Texas Instruments SCOPETM testability IC family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

In the normal mode, these devices are 20-bit universal bus transceivers that combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPETM universal bus transceivers.

Data flow in each direction is controlled by output-enable ( and ), latch-enable (LEAB and LEBA), clock-enable ( and ), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A-bus data is latched while is high and/or CLKAB is held at a static low or high logic level. Otherwise, if LEAB is low and is low, A-bus data is stored on a low-to-high transition of CLKAB. When is low, the B outputs are active. When is high, the B outputs are in the high-impedance state. B-to-A data flow is similar to A-to-B data flow but uses the , LEBA, , and CLKBA inputs.

In the test mode, the normal operation of the SCOPETM universal bus transceivers is inhibited, and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs boundary scan test operations according to the protocol described in IEEE Standard 1149.1-1990.

Four dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry can perform other testing functions such as parallel signature analysis on data inputs and pseudo-random pattern generation from data outputs. All testing and scan operations are synchronized to the TAP interface.

Additional flexibility is provided in the test mode through the use of two boundary scan cells (BSCs) for each I/O pin. This allows independent test data to be captured and forced at either bus (A or B). A PSA/COUNT instruction is also included to ease the testing of memories and other circuits where a binary count addressing scheme is useful.

The SN54ABT18504 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT18504 is characterized for operation from -40°C to 85°C.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Pin-for-pin with same functionality to the compared device
74ACT16861 ACTIVE 20-Bit Bus Transceivers With 3-State Outputs Longer propagation delay (8ns), lower average drive strength (24mA)

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 21
Type Title Date
* Data sheet Scan Test Devices With 20-Bit Universal Bus Transceivers datasheet (Rev. B) 01 Jun 1993
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
EVM User's guide LASP Demo Board User's Guide 01 Nov 2005
Application note Programming CPLDs Via the 'LVT8986 LASP 01 Nov 2005
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
Application note Quad Flatpack No-Lead Logic Packages (Rev. D) 16 Feb 2004
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 May 2002
Selection guide Advanced Bus Interface Logic Selection Guide 09 Jan 2001
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note Advanced BiCMOS Technology (ABT) Logic Characterization Information (Rev. B) 01 Jun 1997
Application note Designing With Logic (Rev. C) 01 Jun 1997
Application note Advanced BiCMOS Technology (ABT) Logic Enables Optimal System Design (Rev. A) 01 Mar 1997
Application note Family of Curves Demonstrating Output Skews for Advanced BiCMOS Devices (Rev. A) 01 Dec 1996
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 May 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation model

BSDL Model of SN74ABT18504

SCTM013.ZIP (3 KB) - BSDL Model
Simulation model

SN74ABT18504 IBIS Model (Rev. A)

SCBM020A.ZIP (15 KB) - IBIS Model
Package Pins Download
LQFP (PM) 64 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos