Product details

Technology family AHCT Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Number of channels 8 IOL (max) (mA) 8 IOH (max) (mA) -8 Supply current (max) (µA) 40 Input type TTL-Compatible CMOS Output type Push-Pull Features Balanced outputs, Over-voltage tolerant inputs, Very high speed (tpd 5-10ns) Rating Military Operating temperature range (°C) -55 to 125
Technology family AHCT Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Number of channels 8 IOL (max) (mA) 8 IOH (max) (mA) -8 Supply current (max) (µA) 40 Input type TTL-Compatible CMOS Output type Push-Pull Features Balanced outputs, Over-voltage tolerant inputs, Very high speed (tpd 5-10ns) Rating Military Operating temperature range (°C) -55 to 125
CDIP (J) 20 167.464 mm² 24.2 x 6.92
  • Inputs Are TTL-Voltage Compatible
  • Latch-Up Performance Exceeds 250 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

  • Inputs Are TTL-Voltage Compatible
  • Latch-Up Performance Exceeds 250 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

The ’AHCT540 octal buffers/drivers are ideal for driving bus lines or buffer memory address registers. These devices feature inputs and outputs on opposite sides of the package to facilitate printed circuit board layout.

The 3-state control gate is a two-input AND gate with active-low inputs so that if either output-enable (OE1 or OE2) input is high, all corresponding outputs are in the high-impedance state. The outputs provide inverted data when they are not in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The ’AHCT540 octal buffers/drivers are ideal for driving bus lines or buffer memory address registers. These devices feature inputs and outputs on opposite sides of the package to facilitate printed circuit board layout.

The 3-state control gate is a two-input AND gate with active-low inputs so that if either output-enable (OE1 or OE2) input is high, all corresponding outputs are in the high-impedance state. The outputs provide inverted data when they are not in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 20
Type Title Date
* Data sheet SN54AHCT540, SN74AHCT540 datasheet (Rev. M) 27 Jun 2013
* SMD SN54AHCT540 SMD 5962-96851 21 Jun 2016
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Little Logic Guide 2018 (Rev. G) 06 Jul 2018
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note How to Select Little Logic (Rev. A) 26 Jul 2016
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Product overview Design Summary for WCSP Little Logic (Rev. B) 04 Nov 2004
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
Application note Advanced High-Speed CMOS (AHC) Logic Family (Rev. C) 02 Dec 2002
Application note Texas Instruments Little Logic Application Report 01 Nov 2002
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
Design guide AHC/AHCT Designer's Guide February 2000 (Rev. D) 24 Feb 2000
Product overview Military Advanced High-Speed CMOS Logic (AHC/AHCT) (Rev. C) 01 Apr 1998
Application note Migration From 3.3-V To 2.5-V Power Supplies For Logic Devices 01 Dec 1997
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note CMOS Power Consumption and CPD Calculation (Rev. B) 01 Jun 1997
Application note Live Insertion 01 Oct 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Package Pins Download
CDIP (J) 20 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos